
December 28, 2009 12:15 WSPC - Proceedings Trim Size: 9in x 6in recent
52
According to Lemma 3.2 and (3.8), we have by using |λ| ≤
λ
1
2kak
∞
,
0 ≤
α + 1
p
Γ
p
(u, φ) +
β + 1
q
Γ
q
(v, ψ) ≤ 0.
Hence
Γ
p
(u, φ) = Γ
q
(v, ψ) = 0.
This and Lemma 3.2 imply that φ ≡ tu and ψ ≡ t
0
v. Then by using the
normalization B(u, v) = 1 we conclude that u ≡ φ, v ≡ ψ.
Acknowledgements. The author gratefully acknowledges the finan-
cial support provided by Al-Imam Muhammed Ibn Saud Islamic University
during this research.
References
1. A. Anane: Etude des valeurs propres et de la r´esonance pour l’op´erateur
p-Laplacien, th`ese de Doctorat, U.L.B (1987-88).
2. P.A. Binding and Y.X. Huang: The principal eigencurve for p-Laplacian,
Diff. int. Equations, 8, n.2 (1995), 405-415.
3. J. Chabrowski: On multiple solutions for nonhomogeneous system of elliptic
equations, Revista Matimatica de la Universidad Computense de Madrid
volume 9, numero 1, 1996.
4. J.I. Diaz and J.E. Saa: Existence et unicit´e de solutions positives pour cer-
taines ´equations elliptiques quasilin´eaires. C.R. Acad. Sci. Paris, serie I,
Math. 305,(1987), 521-524.
5. E. Dibenedetto: C
1+α
-local regularity of weak solutions of degenerate el-
liptic equations, Nonlinear Analysis T.M.A. 7, (1983), 827-859.
6. F. De Th
´
elin: Premi`ere valeur propre d’un syst`eme elliptique non lin´eaire,
C.R. Acad. Sci. Paris,t. 311, Serie I, (1990), 603-606.
7. F. De Th
´
elin and J. V
´
elin: Existence et non existence de solutions non
triviales pour des syst´emes elliptiques non-lin´eaires, C.R. Acad. Sci. Paris,
313, serie I, (1991), 589-592.
8. A. El Khalil, A. El Manouni and M. Ouanan: Simplicity and stability
of the first eigenvalue of a nonlinear elliptic system, International Journal of
Mathematics and Mathematical Sciences, Vol. (2005)10, (2005), 1555-1563.
9. A. El Khalil and A. Touzani: On the first eigencurve of the p-Laplacian,
Lecture Note in Pure and Applied Mathematics, Vol. 229 (2002), 195-205.
10. J. Fleckinger, R.F. Manasevich, N.M. Stavrakakis and F. De Th
´
elin:
Principal eigenvalue for some quasilinear elliptic equations on IR
N
, Ad-
vances in Diffrential Equations, Vol. 2, No.6 (1997), 981-1003.
11. P. Hess and T. Kato: On some liner and nonliner eigenvalue problems with
an indefinite weight function, Comm.P.D.E. 5 (1980), 999-1030.
12. T. Kato: Superconvexity of the spectral radius and convexity of the spectral
bond and the type, Math.Z., 180 (1982), 265-273.