Chapter 2
Aldrich,L.T. an d Nier, A. O. (1948a).Argon40 in potassium minerals.Phys. Rev.74,876^7.
Aldrich,L.T. an d Nier, A. O. (1948b).The occurrenceof
3
Hein naturalsourcesof helium. Phys.Rev.
74,159 0^4.
Aldrich,L.T., Herzog,L., Holve, W.,Witting, F., and Ahrens,L.(1953).Variation in isotopi c
abun danceofstrontium. Phys.Rev. 86,631^4.
Barbo, L.(2003). LesBecquerel:UneDynastie d esScienti¢ques. Paris:Belin.
Bateman,H.(1910). Solutionofasystemofdi¡erential equations occurringinthetheoryofradio-
activetransformation s.Proc.CambridgePhil.Soc.15,423^7.
Birck,J. L. andAlle
'
gre, C. J. (1985). Evidence for the presence of
53
Mn inthe earlysolar-system.
Geophys.Res.Lett. 12,745^8.
Harper, C. L.and Jacobs en, S. B. (1994). Investigation of
182
Hf^
182
W systematics. LunarPlan. Sci.
25,509^10.
Hi rt,B.,Tilton, G. R., Herr,W., andHo¡meister,W. (1963).Thehalf-lifeof
187
Re.In Geiss, J.
andGoldberg,E. D. (eds.) EarthScienceand Meteorites,Amsterdam:North-Holland, pp.273^80.
Ivanovich,M. (1982). Uranium series disequilibria applicationingeochronology. In Ivanovich,M.
and Harmon, R.(eds.) UraniumSeriesDisequilibrium: Applicationto Environmental Problem s,
Oxford, UK: OxfordUniversity Press, pp.56^78.
Je¡rey, P. M.and Reynolds,J. H.(1961).Origin ofexcess
129
Xein stonemeteorites.J.Geophys.Res.,66,
3582^3.
Kelly,W. R. andWasserburg, G. J. (1978). Evidence for the existence of
107
Pd in the earlySolar System.
Geophys.Res.Lett. 5,1 079^82.
Kuroda, P. K. (1960). Nuclear ¢ssion in the earlyhistoryoftheEarth.Nature187,36^8.
Lee, D.-C. and Halliday, A. N. (1995). Hafnium^tungsten chronometryandthetimingofterrestrial
coreformation. Nature 37 8,771^4.
Lee,T., Papanastassiou, D. A., and Wasserburg, G. J. (1977). Aluminium-26 in the earlysolar-system:
fossil or fuel? Astrophys. J. (Lett.) 211, L107^10.
Leighton,R. B. (1959). Principlesof Mod ern Physics.NewYork:McGraw-Hill.
Lin,Y.,Guan,Y.,Leshin,L. A., Ouyang,Z.,andWang,D. (2005).Short-livedchlorine-36inaCa-and
Al-rich inclusion fromtheNingqiangcarbonaceous chondrite. Proc.NatlAcad. Sci. USA 102,
13 06^11.
Luck, J. M., Birck,J. L.,andAlle
'
gre, C. J. (1980).
187
Re ^
187
Os systematics i n meteorites:early
chronologyofthe solar system andthe ageofthegalaxy. Nature 283, 256^9.
Lugmair, G.W. andMarti, K.(1977). Sm ^Nd^Pu timepieces inthe Angrados Reis meteorite. Earth
Planet.Sci.Lett.35,273^84.
Lugmair, G.W., Scheinin N. B., and Marti,K. (1975). Search forextinct
146
Sm. Pt. I.Theisotopic
abun danceof
143
Nd in the Juvinas meteorite. E arthPlanet.Sci. Lett. 27,9479^84.
McKeegan,K. D., Chaussidon, M., and Robert, F. (2000). Incorporationofshort-lived
10
Beina
calcium^aluminium-rich inclusion from theAl lende meteorite. Science 289,1334^7.
Naka
¨
ı,S. , Shimizu, H.,and Masuda,A.(1986). A newgeochronometer using lanthanum-138. Nature
32 0,433^5.
Nielsen,S. G., Rehka
«
mper, M., and Halliday, A. N. (2006). Largethallium isotopic variationin iron
meteorites and evidenceforlead-205inthe earlysolar system. Geochim. Cosmochim. Acta 70,
2643^57.
Notsu, K., Mabuchi, H.,Yoshioka,O., Matsuda, J., andOzima, M.(1973). Evidence ofthe extinct
nuclide
146
Sm in‘‘Juvinas’’achondrite.EarthPlanet.Sci. Lett.19,29^36.
Patchett,P. J. and Tatsumoto, M.(1980a). Lu^Hftotal rocks isochron foreucrite meteorites. Nature
288, 263^7.
Patchett,P. J. and Tatsumoto, M.(1980b). A routinehigh-precision method for Lu^Hf isotope
geochemistryand chronology. Contrib. Mineral.Petrol.75, 263^7.
474 References