
171
(P.D. Boyer ed.), Vol. 1, pp. 213-240. New York, Academic Press, 1970.
37. Adam G., Delbruck M. Reduction of dimensionality in biological diffusion processes. InB Structural Chemistry and Molecular Biology (A.
Rich, N. Davidson eds.), pp. 198-215. San Francisco, Freeman, 1968.
Berg O. G., van Hippel P. H. Diffusion-controlled macromolecular interactions. Anna Rev. Biophys. Biophys. Biochem., 14, 131-160, 1985.
38. Cantor C.R., Schimmel P.R. Biophysical Chemistry. Part III: The Behavior of Biological Macromolecules. Chapters 15 and 17. New York, W.
H. Freeman, 1980.
Dickerson R. E., Geis I. Hemoglobin: Structure, Function, Evolution and Pathology. Menlo Park, CA. Benjamin-Cummings, 1983.
Edelstein S. J. Introductory Biochemistry. San Francisco, Holden-Day, 1973. (Chapter 10 on protein aggregates and allosteric interactions.)
Monod J., Changeux J.-P., Jacob F. Allosteric proteins and cellular control systems. J. Моl. Biol., 6, 306-329, 1963.
39. Koshland D.E., Jr. Control of enzyme activity and metabolic pathways. Trends Biochem. Sci., 9, 155-159, 1984. Newsholme E. A., Start C.
Regulation in Metabolism. New York, Wiley, 1973.
40. Koch K.-W., Stryer L. Highly cooperative feedback control of retinal rod guanylate cyclase by calcium ions. Nature, 334, 64-65, 1988.
Nishizuka Y. Protein kinases in signal transduction. Trends Biochem. Sci., 9, 163-166, 1984.
41. Kantrowitz E.R., Lipscomb W.N. Escherichia coli aspartate transcarbamoylase: the relation between structure and fanction Science, 241, 669-
674, 1988.
Schachman H.K. Can a simple model account for the allosteric transition of aspartate transcarbamoylase? J. Biol. Chem., 263, 18583-18586,
1988.
Sprang S., Goldsmith E., Fretterick R. Structure of the nucleotide activation switch in glycogen phosphorylase a. Science, 237, 1012-1019,
1987.
42. Hill T.L. Biochemical cycles and free energy transduction. Trends Biochem. Sci., 2, 204-207, 1977.
Hill T.L. A. proposed common allosteric mechanism for active transport, muscle contraction, and ribosomal translocation. Proc. Natl. Acad.
Sci. USA, 64, 267-274, 1969.
Johnson K.A. Pathway of the microtubule-dynein ATPase and the structure of dynein: a comparison with actomyosin. Annu. Rev. Biophys.
Biophys. Chem., 14, 161-188, 1985.
43. Hokin L.E. The molecular machine for driving the coupled transports of Na
+
and K
+
is an (Na
+
+ Reactivated ATPase. Trends Biochem. Sci., 1,
233-237, 1976.
Kyte J. Molecular considerations relevant to the mechanism of active transport. Nature, 292, 201-204, 1981.
Tanford C. Mechanism of free energy coupling in active transport. Annu. Rev. Biochem., 53, 379-409, 1983.
44. Nicholls D. G. Bioenergetics: An Introduction to the Chemiosmotic Theory. New York, Academic Press, 1982.
45. Alberts В. М. Protein machines mediate the basic genetic processes. Trends Genet., 1, 26-30, 1985.