Статья. Опубликована в журнале "Физическая мезомеханика" – 2008. -
№ 11 4 . – С. 43-59
В статье рассматриваются задачи о растяжении, разгрузке и повторном растяжении тонкой пластины с трещиной нормального отрыва. Для трех задач исследованы геометрические формы деформированной трещины. Первичное растяжение пластины приводит к раскрытию берегов трещины. Когда растягивающие напряжения на бесконечности достигают максимального значения, геометрическая форма трещины представляет собой эллипс. Задача о первичном растяжении решается в рамках модифицированных моделей Леонова-Панасюка-Дагдейла и упругопластических аналогов задач Гриффитса для трещины-разреза и эллипса. При разгрузке пластины наблюдается уменьшение радиуса кривизны реального эллипса в вершине и продавливание на концевых участках фиктивного эллипса. При повторном растяжении упругие свойства материала повышаются, что приводит к увеличению радиусов кривизны в вершине реального и фиктивного эллипсов, критических значений растягивающих внешних напряжений и длины зоны предразрушения перед вершиной реального эллипса. Заметим, что зада«ш о разгрузке и повторном растяжении пластины решаются исключительно в рамках модифицированной модели Леонова-Панасюка-Дагдейла и упругопластического аналога задаш Гриффитса для эллипса. В процессе решения задаш о первичном растяжении получены формулы, позволяющие при введении небольших изменений определить напряжения и перемещения в любой точке тонкой пластины с эллипсом произвольного размера при разгрузке и повторном растяжении.
В статье рассматриваются задачи о растяжении, разгрузке и повторном растяжении тонкой пластины с трещиной нормального отрыва. Для трех задач исследованы геометрические формы деформированной трещины. Первичное растяжение пластины приводит к раскрытию берегов трещины. Когда растягивающие напряжения на бесконечности достигают максимального значения, геометрическая форма трещины представляет собой эллипс. Задача о первичном растяжении решается в рамках модифицированных моделей Леонова-Панасюка-Дагдейла и упругопластических аналогов задач Гриффитса для трещины-разреза и эллипса. При разгрузке пластины наблюдается уменьшение радиуса кривизны реального эллипса в вершине и продавливание на концевых участках фиктивного эллипса. При повторном растяжении упругие свойства материала повышаются, что приводит к увеличению радиусов кривизны в вершине реального и фиктивного эллипсов, критических значений растягивающих внешних напряжений и длины зоны предразрушения перед вершиной реального эллипса. Заметим, что зада«ш о разгрузке и повторном растяжении пластины решаются исключительно в рамках модифицированной модели Леонова-Панасюка-Дагдейла и упругопластического аналога задаш Гриффитса для эллипса. В процессе решения задаш о первичном растяжении получены формулы, позволяющие при введении небольших изменений определить напряжения и перемещения в любой точке тонкой пластины с эллипсом произвольного размера при разгрузке и повторном растяжении.