New York: Charles Scribner's sons, 1902. 207 стр.
Классическая монография одного из основателей статистической механики и физики Джозайи Вилларда Гиббса (на английском языке). Не потеряла своего научного значения по настоящее время. Особое внимание уделено основам термодинамики и введению и различным приложениям понятия "каконический ансамбль":
General notions. The principle of conservation of extension-in-phase.
Application of the principle of conservation of extension-in-phase to the theory of errors.
Application of the principle of conservation of extension-in-phase to the integration of the differential equations of motion.
On the distribution-in-phase called canonical, in which the index of probability is a linear function of the energy.
Average values in a canonical ensemble of systems.
Extension-in-configuration and extension-in-velocity.
Farther discussion of averages in a canonical ensemble of systems.
On certain important functions of the energies of a system.
The function f and the canonical distribution.
On a distribution in phase called microcanonical in which all the systems have the same energy.
Maximum and minimum properties of various distributions in phase.
On the motion of systems and ensembles of systems through long periods of time.
Effect of various processes on an ensemble of systems.
Discussion of thermodynamic analogies.
Systems composed of molecules.
Классическая монография одного из основателей статистической механики и физики Джозайи Вилларда Гиббса (на английском языке). Не потеряла своего научного значения по настоящее время. Особое внимание уделено основам термодинамики и введению и различным приложениям понятия "каконический ансамбль":
General notions. The principle of conservation of extension-in-phase.
Application of the principle of conservation of extension-in-phase to the theory of errors.
Application of the principle of conservation of extension-in-phase to the integration of the differential equations of motion.
On the distribution-in-phase called canonical, in which the index of probability is a linear function of the energy.
Average values in a canonical ensemble of systems.
Extension-in-configuration and extension-in-velocity.
Farther discussion of averages in a canonical ensemble of systems.
On certain important functions of the energies of a system.
The function f and the canonical distribution.
On a distribution in phase called microcanonical in which all the systems have the same energy.
Maximum and minimum properties of various distributions in phase.
On the motion of systems and ensembles of systems through long periods of time.
Effect of various processes on an ensemble of systems.
Discussion of thermodynamic analogies.
Systems composed of molecules.