Cambridge University Press, 297 pages, 1999.
This book provides an introduction to nonequilibrium statistical mechanics applied to ideas in chaotic dynamics. The author illustrates how techniques in statistical mechanics can be used to calculate quantities that are essential to understanding the chaotic behavior of fluid systems. Beginning with important background information, the volume goes on to introduce basic concepts of dynamical systems theory through simple examples before explaining advanced topics such as SRB and Gibbs measures. It will be of great interest to graduate students and researchers in condensed matter physics, nonlinear science, theoretical physics, mathematics, and theoretical chemistry.
This book provides an introduction to nonequilibrium statistical mechanics applied to ideas in chaotic dynamics. The author illustrates how techniques in statistical mechanics can be used to calculate quantities that are essential to understanding the chaotic behavior of fluid systems. Beginning with important background information, the volume goes on to introduce basic concepts of dynamical systems theory through simple examples before explaining advanced topics such as SRB and Gibbs measures. It will be of great interest to graduate students and researchers in condensed matter physics, nonlinear science, theoretical physics, mathematics, and theoretical chemistry.