Academic Press, Elsevier, 2011, 390 pages
Introductory Statistical Thermodynamics is a text for an introductory one-semester course in statistical thermodynamics for upper-level undergraduate and graduate students in physics and engineering. The book offers a high level of detail in derivations of all equations and results. This information is necessary for students to grasp difficult concepts in physics that are needed to move on to higher level courses. The text is elementary, self contained, and mathematically well-founded, containing a number of problems with detailed solutions to help students to grasp the more difficult theoretical concepts.
The first part of the book covers the microscopic models of constituent particles. It discusses three basic models from quantum mechanics. Some sections of the first part of the book are of a purely quantum-mechanical and mathematical significance. Although not directly related to the traditional subjects of thermodynamics, they are considered in some detail in order to establish a complete understanding of the quantum description of macroscopic systems of particles. The second part of the book is devoted to the detailed derivation of the basic notions of classical statistical mechanics and the general laws of macroscopic thermodynamics that relate various thermodynamic quantities. The third part of the book covers the application of the general macroscopic laws, derived in the second part, to the physically interesting cases of the ideal and nonideal gases. Finally, in the fourth part of the book, a discussion of quantum statistical mechanics and some relativistic phenomena is presented. The quantum relativistic thermodynamics includes a study of some macroscopic phenomena in the expanding early universe.
Introductory Statistical Thermodynamics is a text for an introductory one-semester course in statistical thermodynamics for upper-level undergraduate and graduate students in physics and engineering. The book offers a high level of detail in derivations of all equations and results. This information is necessary for students to grasp difficult concepts in physics that are needed to move on to higher level courses. The text is elementary, self contained, and mathematically well-founded, containing a number of problems with detailed solutions to help students to grasp the more difficult theoretical concepts.
The first part of the book covers the microscopic models of constituent particles. It discusses three basic models from quantum mechanics. Some sections of the first part of the book are of a purely quantum-mechanical and mathematical significance. Although not directly related to the traditional subjects of thermodynamics, they are considered in some detail in order to establish a complete understanding of the quantum description of macroscopic systems of particles. The second part of the book is devoted to the detailed derivation of the basic notions of classical statistical mechanics and the general laws of macroscopic thermodynamics that relate various thermodynamic quantities. The third part of the book covers the application of the general macroscopic laws, derived in the second part, to the physically interesting cases of the ideal and nonideal gases. Finally, in the fourth part of the book, a discussion of quantum statistical mechanics and some relativistic phenomena is presented. The quantum relativistic thermodynamics includes a study of some macroscopic phenomena in the expanding early universe.