М.: Вычислительный центр РАН, 2002. – 80 c.
Анотация:
В первой части содержится обзор развитой на Западе методологии для выработки подходов к задаче управления портфелем финансовых инструментов, выбору критериев, генерированию сценариев для случайных величин, выбору алгоритмов решения получающихся задач стохастического динамического управления. Во второй части работы излагаются оригинальные результаты автора. Сформулирована двухкритериальная задача об управлении портфелем в динамике с целью максимизации ожидаемого дохода в конце процесса от вложенного капитала в начале и минимизации критерия допустимых потерь. Динамика портфеля записывается в переменных — количествах ценных бумаг в портфеле. Основные результаты относятся к динамической задаче при наличии неопределенных факторов в виде марковского процесса. В такой постановке для решения задачи по выбору одной из паретовских точек в пространстве двух критериев применим формализм динамического программирования. Удается установить принцип линейного разложения оптимального результата текущей оптимальной оценки конечного результата и как следствие установить оптимальность простых стратегий для задачи максимизации математического ожидания конечного результата. Предложены вычислительные процедуры прогонки, которые основываются на декомпозиции исходной задачи на случайный процесс и детерминированный.
Анотация:
В первой части содержится обзор развитой на Западе методологии для выработки подходов к задаче управления портфелем финансовых инструментов, выбору критериев, генерированию сценариев для случайных величин, выбору алгоритмов решения получающихся задач стохастического динамического управления. Во второй части работы излагаются оригинальные результаты автора. Сформулирована двухкритериальная задача об управлении портфелем в динамике с целью максимизации ожидаемого дохода в конце процесса от вложенного капитала в начале и минимизации критерия допустимых потерь. Динамика портфеля записывается в переменных — количествах ценных бумаг в портфеле. Основные результаты относятся к динамической задаче при наличии неопределенных факторов в виде марковского процесса. В такой постановке для решения задачи по выбору одной из паретовских точек в пространстве двух критериев применим формализм динамического программирования. Удается установить принцип линейного разложения оптимального результата текущей оптимальной оценки конечного результата и как следствие установить оптимальность простых стратегий для задачи максимизации математического ожидания конечного результата. Предложены вычислительные процедуры прогонки, которые основываются на декомпозиции исходной задачи на случайный процесс и детерминированный.