• формат pdf
  • размер 12.78 МБ
  • добавлен 23 января 2011 г.
Cruz J. Constraint Reasoning for Differential Models
IOS Press, 2005. - 243 pages.

The basic motivation of this work was the integration of biophysical models within the interval constraints framework for decision support. Comparing the major features of biophysical models with the expressive power of the existing interval constraints framework, it was clear that the most important inadequacy was related with the representation of differential equations. System dynamics is often modelled through differential equations but there was no way of expressing a differential equation as a constraint and integrate it within the constraints framework.

Consequently, the goal of this work is focussed on the integration of ordinary differential equations within the interval constraints framework, which for this purpose is extended with the new formalism of Constraint Satisfaction Differential Problems. Such framework allows the specification of ordinary differential equations, together with related information, by means of constraints, and provides efficient propagation techniques for pruning the domains of their variables. This enabled the integration of all such information in a single constraint whose variables may subsequently be used in other constraints of the model. The specific method used for pruning its variable domains can then be combined with the pruning methods associated with the other constraints in an overall propagation algorithm for reducing the bounds of all model variables.

The application of the constraint propagation algorithm for pruning the variable domains, that is, the enforcement of local-consistency, tued out to be insufficient to support decision in practical problems that include differential equations. The domain pruning achieved is not, in general, sufficient to allow safe decisions and the main reason derives from the non-linearity of the differential equations. Consequently, a complementary goal of this work proposes a new strong consistency criterion, Global Hull-consistency, particularly suited to decision support with differential models, by presenting an adequate trade-of between domain pruning and computational effort. Several alteative algorithms are proposed for enforcing Global Hull-consistency and, due to their complexity, an effort was made to provide implementations able to supply any-time pruning results.
Похожие разделы
  1. Академическая и специальная литература
  2. Биологические дисциплины
  3. Матметоды и моделирование в биологии
  1. Академическая и специальная литература
  2. Военные дисциплины
  3. Матметоды и моделирование в военном деле
  1. Академическая и специальная литература
  2. Геологические науки и горное дело
  3. Матметоды и моделирование в горно-геологической отрасли
  1. Академическая и специальная литература
  2. Информатика и вычислительная техника
  3. Информатика (начальный курс)
  4. Работа в MathCad / MatLab / Maple / Derive
  1. Академическая и специальная литература
  2. Информатика и вычислительная техника
  3. Искусственный интеллект
  4. Эволюционные алгоритмы
  1. Академическая и специальная литература
  2. Информатика и вычислительная техника
  3. Компьютерное моделирование
  1. Академическая и специальная литература
  2. Легкая промышленность
  3. Матметоды и моделирование в легкой промышленности
  1. Академическая и специальная литература
  2. Лесное дело и деревообработка
  3. Матметоды и моделирование в лесном деле и деревообработке
  1. Академическая и специальная литература
  2. Математика
  1. Академическая и специальная литература
  2. Математика
  3. Математическая физика
  1. Академическая и специальная литература
  2. Машиностроение и металлообработка
  3. Конструирование и проектирование в машиностроении
  4. Матметоды и моделирование в машиностроении
  1. Академическая и специальная литература
  2. Медицинские дисциплины
  3. Матметоды и моделирование в медицине
  1. Академическая и специальная литература
  2. Металлургия
  3. Моделирование в металлургии
  1. Академическая и специальная литература
  2. Наноматериалы и нанотехнологии
  3. Матметоды и моделирование в нанотехнологии
  1. Академическая и специальная литература
  2. Науки о Земле
  3. Почвоведение
  4. Матметоды и моделирование в почвоведении
  1. Академическая и специальная литература
  2. Нефтегазовая промышленность
  3. Нефтегазовое дело
  4. Матметоды и моделирование в нефтегазовом деле
  1. Академическая и специальная литература
  2. Промышленное и гражданское строительство
  3. Матметоды и моделирование в строительстве
  1. Академическая и специальная литература
  2. Психологические дисциплины
  3. Матметоды и моделирование в психологии
  1. Академическая и специальная литература
  2. Радиоэлектроника
  3. Матметоды и моделирование в радиоэлектронике
  1. Академическая и специальная литература
  2. Связь и телекоммуникации
  3. Матметоды и моделирование в связи и телекоммуникациях
  1. Академическая и специальная литература
  2. Сельское хозяйство
  3. Матметоды и моделирование в сельском хозяйстве
  1. Академическая и специальная литература
  2. Социологические дисциплины
  3. Методология социологических исследований
  4. Матметоды и моделирование в социологии
  1. Академическая и специальная литература
  2. Топливно-энергетический комплекс
  3. Математические задачи энергетики
  1. Академическая и специальная литература
  2. Физика
  3. Матметоды и моделирование в физике
  1. Академическая и специальная литература
  2. Финансово-экономические дисциплины
  3. Логистика
  4. Матметоды и моделирование в логистике
  1. Академическая и специальная литература
  2. Финансово-экономические дисциплины
  3. Математические методы и моделирование в экономике
  1. Академическая и специальная литература
  2. Химия и химическая промышленность
  3. Матметоды и моделирование в химии
  1. Академическая и специальная литература
  2. Экологические дисциплины
  3. Матметоды и моделирование в экологии
  1. Академическая и специальная литература
  2. Языки и языкознание
  3. Лингвистика
  4. Прикладная лингвистика
  5. Матметоды и моделирование в лингвистике
  1. Прикладная литература
  2. Компьютерная литература
  3. Matlab / Simulink
Смотрите также

Cundy H.M., Rollett A.P. Mathematical Models

  • формат djvu
  • размер 4.91 МБ
  • добавлен 20 апреля 2011 г.
Oxford University Press, 1974. - 286 pages. This is the classic book of detailed instructions for making a wide variety of mathematical models of all kinds Complete nets are given for all regular Archimedean and stellated polyhedra together with a number of interesting compounds. There are sections on paper folding, dissections, curve stitching, linkages, the drawing of loci and envelopes and the construction of plane tessellations. The volume i...

Haberman R. Mathematical Models: Mechanical Vibrations, Population Dynamics and Traffic Flow

  • формат djvu
  • размер 2.98 МБ
  • добавлен 04 декабря 2010 г.
Society for Industrial Applied Mathematics, 1987. - 402 pages. Mathematics is a grand subject in the way it can be applied to various problems in science and engineering. To use mathematics, one needs to understand the physical context. The author uses mathematical techniques along with observations and experiments to give an in-depth look at models for mechanical vibrations, population dynamics, and traffic flow. Equal emphasis is placed on the...

Istas J. Mathematical Modeling for the Life Sciences

  • формат pdf
  • размер 1.81 МБ
  • добавлен 10 января 2011 г.
Springer, 2005. - 164 Pages. Proposing a wide range of mathematical models that are currently used in life sciences may be regarded as a challenge, and that is precisely the challenge that this book takes up. Of course this panoramic study does not claim to offer a detailed and exhaustive view of the many interactions between mathematical models and life sciences. This textbook provides a general overview of realistic mathematical models in life...

Korn G.A. Advanced Dynamic-system Simulation: Model-replication Techniques and Monte Carlo Simulation

  • формат pdf
  • размер 3.34 МБ
  • добавлен 27 мая 2011 г.
Wiley-Interscience, 2007. - 221 pages. Learn the latest techniques in programming sophisticated simulation systems The text begins with an introduction to dynamic-system simulation, including a demonstration of a simple guided-missile simulation. Among the other highlights of coverage are: - Models that involve sampled-data operations and sampled-data difference equations, including improved techniques for proper numerical integration of switc...

Lee S.-Y. Handbook of Latent Variable and Related Models

  • формат pdf
  • размер 2.48 МБ
  • добавлен 14 мая 2011 г.
North Holland, 2007. - 458 Pages. This Handbook covers latent variable models, which are a flexible class of models for modeling multivariate data to explore relationships among observed and latent variables. - Covers a wide class of important models - Models and statistical methods described provide tools for analyzing a wide spectrum of complicated data - Includes illustrative examples with real data sets from business, education, medicine,...

McCulloch C.E., Searle S.R. Generalized, Linear, and Mixed Models

  • формат pdf
  • размер 10.78 МБ
  • добавлен 17 ноября 2011 г.
Wiley-Interscience, 2001. - 348 pages. The availability of powerful computing methods in recent decades has thrust linear and nonlinear mixed models into the mainstream of statistical application. This volume offers a modern perspective on generalized, linear, and mixed models, presenting a unified and accessible treatment of the newest statistical methods for analyzing correlated, nonnormally distributed data. As a follow-up to Searle's clas...

McCulloch C.E., Searle S.R. Generalized, Linear, and Mixed Models

  • формат djvu
  • размер 3.92 МБ
  • добавлен 09 января 2012 г.
Wiley-Interscience, 2001. - 348 pages. The availability of powerful computing methods in recent decades has thrust linear and nonlinear mixed models into the mainstream of statistical application. This volume offers a modern perspective on generalized, linear, and mixed models, presenting a unified and accessible treatment of the newest statistical methods for analyzing correlated, nonnormally distributed data. As a follow-up to Searle's classi...

Rao R.C., Toutenburg H. Linear Models: Least Squares and Alternatives

  • формат pdf
  • размер 1.73 МБ
  • добавлен 01 декабря 2009 г.
New York: Springer, 1999. - 427 p. Contents: Linear Models, The Linear Regression Model, The Generalized Linear Regression Model , Exact and Stochastic Linear Restrictions, Prediction Problems in the Generalized Regression Model, Sensitivity Analysis, Analysis of Incomplete Data Sets , Robust Regression, Models for Categorical Response Variables and other.

Telek M. Analysis of inhomogeneous Markov reward models

Статья
  • формат pdf
  • размер 348.13 КБ
  • добавлен 24 мая 2011 г.
Paper - 2003 The majority of computational methods applied for the analysis of homogeneous Markov reward models (MRMs) are not applicable for the analysis of inhomogeneous MRMs. By the nature of inhomogeneous models, only forward differential equations can be used to describe the model behaviour. In this paper we provide forward partial differential equations describing the distribution of reward measures of inhomogeneous MRMs. Based on this des...

Wichura M.J. The Coordinate-Free Approach to Linear Models

  • формат pdf
  • размер 1.18 МБ
  • добавлен 15 мая 2011 г.
Cambridge University Press, 2006. - 216 Pages. This book is about the coordinate-free, or geometric, approach to the theory of linear models; more precisely, Model I ANOVA and linear regression models with nonrandom predictors in a finite-dimensional setting. This approach is more insightful, more elegant, more direct, and simpler than the more common matrix approach to linear regression, analysis of variance, and analysis of covariance models i...