• формат djvu
  • размер 2.46 МБ
  • добавлен 02 марта 2011 г.
Crowell R.H., Fox R.?. Introduction to knot theory
Springer- Verlag, 1963. 182 p.
Contents
Prerequisites
Chapter I Knots and Knot Types
Chapter II The Fundamental Group
Chapter III The Free Groups
Chapter IV Presentation of Groups
Chapter V Calculation of Fundamental Groups
Chapter VI Presentation of a Knot Group
Chapter VII The Free Calculus and the Elementary Ideals
Chapter VIII The Knot Polynomials
Chapter IX Characteristic Properties of the Knot Polynomials
Appendix I Differentiable Knots are Tame
Appendix II Categories and groupoids
Appendix III Proof of the van Kampen theorem
Guide to the Literature
Bibliography
Index
Смотрите также

Журнальные обзоры по вычислительной теории групп

  • формат pdf
  • размер 348.68 КБ
  • добавлен 17 августа 2010 г.
Два обзора по теории вычислителных групп на английском языке. Авторы обзоров Sims Ch. Computational group theory (1998)-30 p Seress A. An introduction to computational group theory(1999)-30p

Beck M., Robins S. Computing the Continuous Discretely: Integer-point Enumeration in Polyhedra

  • формат pdf
  • размер 3.07 МБ
  • добавлен 08 января 2011 г.
Springer, 2007. - 226 pages. This much-anticipated textbook illuminates the field of discrete mathematics with examples, theory, and applications of the discrete volume of a polytope. The authors have weaved a unifying thread through basic yet deep ideas in discrete geometry, combinatorics, and number theory. Because there is no other book that puts together all of these ideas in one place, this text is truly a service to the mathematical commun...

Blum L., Cucker F., Shub M., Smale S. Complexity and Real Computation

  • формат djvu
  • размер 9.8 МБ
  • добавлен 08 сентября 2011 г.
Springer, 1998. - 453 Pages. The classical theory of computation has its origins in the work of Goedel, Turing, Church, and Kleene and has been an extraordinarily successful framework for theoretical computer science. The thesis of this book, however, is that it provides an inadequate foundation for modern scientific computation where most of the algorithms are real number algorithms. The goal of this book is to develop a formal theory of comput...

Bosma W., Cannon J. (editors) Discovering Mathematics with Magma: Reducing the Abstract to the Concrete

  • формат pdf
  • размер 12.61 МБ
  • добавлен 12 января 2011 г.
Springer, 2006. - 374 pages. This volume celebrates the first decade of the Computer Algebra system Magma. With a design based on the ontology and semantics of algebra, Magma enables users to rapidly formulate and perform calculations in the more abstract parts of mathematics. This book introduces the reader to the role Magma plays in advanced mathematical research through 14 case studies which, in most cases, describe computations underpinning...

Burden R.L., Faires J.D. Numerical Analysis

  • формат pdf
  • размер 14.53 МБ
  • добавлен 16 августа 2011 г.
Brook Cole, 2010. - 888 pages. This well-respected text gives an introduction to the theory and application of modern numerical approximation techniques for students taking a one- or two-semester course in numerical analysis. With an accessible treatment that only requires a calculus prerequisite, Burden and Faires explain how, why, and when approximation techniques can be expected to work, and why, in some situations, they fail. A wealth of ex...

Christensen O., Christensen K.L. Approximation Theory: From Taylor Polynomials to Wavelets

  • формат djvu
  • размер 6.19 МБ
  • добавлен 19 февраля 2011 г.
Birkh?user Boston, 2004. - 165 Pages. This concisely written book gives an elementary introduction to a classical area of mathematics --approximation theory -- in a way that naturally leads to the modern field of wavelets. The exposition, driven by ideas rather than technical details and proofs, demonstrates the dynamic nature of mathematics and the influence of classical disciplines on many areas of modern mathematics and applications.

Collins G.W., II. Fundamental Numerical Methods and Data Analysis

  • формат pdf
  • размер 1.99 МБ
  • добавлен 12 декабря 2010 г.
George W. Collins, II, 2003. - 284 pages. * Contents and Introduction * Chapter 1: Introduction and Fundamental Concepts * Chapter 2: The Numerical Methods for Linear Equations and Matrices * Chapter 3: Polynomial Approximation, Interpolation, and Orthogonal Polynomials * Chapter 4: Numerical Evaluation of Derivatives and Integrals * Chapter 5: Numerical Solution of Differential and Integral Equations * Chapter 6: Least Squares, Fourier An...

Deturck D., Wilf H.S. Lectures on Numerical Analysis

  • формат pdf
  • размер 632.37 КБ
  • добавлен 30 января 2012 г.
Department of Mathematics University of Pennsylvania, 2002. - 124 pages. Differential and Difference Equations. Introduction. Linear equations with constant coefficients. Difference equations. Computing with difference equations. Stability theory. Stability theory of difference equations. The Numerical Solution of Differential Equations. Euler's method. Software notes. Systems and equations of higher order. How to document a program. The midpoin...

Enderton H.B. Computability Theory: An Introduction to Recursion Theory

  • формат pdf
  • размер 1.96 МБ
  • добавлен 02 октября 2011 г.
Academic Press, 2010. - 192 pages. Computability Theory: An Introduction to Recursion Theory, provides a concise, comprehensive, and authoritative introduction to contemporary computability theory, techniques, and results. The basic concepts and techniques of computability theory are placed in their historical, philosophical and logical context. This presentation is characterized by an unusual breadth of coverage and the inclusion of advanced t...

Knabner P., Angerman L. Numerical Methods for Elliptic and Parabolic Partial Differential Equations

  • формат pdf
  • размер 2.4 МБ
  • добавлен 12 декабря 2010 г.
Springer, 2003. - 415 pages. This text provides an application oriented introduction to the numerical methods for partial differential equations. It covers finite difference, finite element and finite volume methods, interweaving theory and applications throughout. Extensive exercises are provided throughout the text. Graduate students in mathematics, engineering and physics will find this book useful.