2.
)lmI CJIyqaHHoH BeJIHqHHbI
Y(N,
m,
M),
HMeIOrn;eH
OTpHlla-
TeJIbHOe
rHrrepreoMel'p~ecKoe
pacrrpe.ueJIeHHe 2 C rrapaMel'paMH
N,
m,
M,
H CJIyqaHHoH
BeJI~HHbI
Z(N,
n,
M),
HMeIOrn;eH
rHrrepreo-
Mel'p~eCKoe
pacrrpe.ueJIeHHe C rrapaMel'paMH N,
n,
M, CrrpaBeAJIH-
BO
COOTHOIlleHHe
P{Y(N,
m,M)
~
n} = P{Z(N,
n,M)
~
m} =
=
1-
P{Z(N,
n,
M)
~
m -1} =
=
1-
P(m
-1;
N, n, M). (2)
3TO COOTHOIlleHHe
rr03BOJIHeT
HCrrOJIb30BaTb Ta6JIHllbI
rHrrepreo-
Mel'p~eCKoro
pacrrpe.ueJIeHWI (Ta6JIHllbI
<l>YHKllHH
P(x;
N,
n,
M»
AJIH
rrpOBe.ueHWI paCqeTOB,
CBH3aHHbIX
C Ol'pHllaTeJIbHbIM
rHrrep-
reOMel'pHqeCKHM pacrrpe.ueJIeHHeM
2.
3.
IIpH
N
~
00,
M
~
00,
N - M
~
00,
TaK
~o
M/N
~
P H
(N
-
M)/
N
~
q
(p
+ q =
1),
Ol'pHllaTeJIbHOe rHrrepreOMel'pHqeCKOe
pacrrpe.ueJIeHHe
2
Cl'peMHTCH
K Ol'pHllaTeJIbHOMY 6HHOMHaJIbHOMy
pacrrpe.ueJIeHHIO
2 (pacrrpe.ueJIeHHe IIacKaJIH) C rrapaMel'paMH
m,
p.
O
...
eHMBaHMe
napaMeTpOB
IIpH
H3BeCTHbIX
N H m OlleHHBaeTCH rrapaMel'p M:
M·
=
m(N.+
1)
-1
(MM).
y
reHepMpOBaHMe
cny'laMHblx
'IMCen
y
=m +
x,
r.ue x - eJIyqaHHoe
qHCJIO,
rrpHHaAJIeXarn;ee
rrOCJIe.uOBaTeJIbHOCTH
CJIyqaHHbIX qHCeJI,
HMeIOrn;HX
ol'pHllaTeJIbHOe
rHrrepreOMel'p~e
CKoe
pacrrpe.ueJIeHHe 1 C rrapaMel'paMH
N,
m,
M.
TeXHMKa
BbI'IMCneHMM
1.
IIOCJIe.uoBaTeJIbHbIe 3HaqeHWI
BepOHTHOCTeH
p(y)
CBH3aHbI
Mex.uy
C060H COOTHOIlleHHeM
,
()
(
1)
(y
-1)(N
- M + m + 1-
y)
py
=py-
,
(y
-
m)(N
+ 1-
y)
y = m +
1,
m +
2,
...
, N - M +
m,
r.ue p(m) = M !(N -
m)
!f[N !
(M
-
m)
!].
2.
)lmI
06JIerqeHWI paCqeTOB,
CBH3aHHbIX
C OTpHllaTeJIbHbIM
rH-
rrepreOMel'p~eCKHM
pacrrpe.ueJIeHHeM
2,
MOXHO HCIIOJIbJOBaTb
Ta6-
JIHllbI
rHrrepreoMel'pmeCKoro
pacrrpe.ueJIeHWI
(CM.
<l>opMyJIY
(2».
80
2.9.
norAPMCS»MMIo4ECKOE
PAcnPEAEllEHME
2.9.1.
norAPMCS»MMIo4ECKOE
PAcnPEAEllEHME
1
1
pX
p(x)
=--
-,
x =1,
2,
...
,
PHA
pacrrpe.ueJIeHWI
In q x
r.ue 0 < p <
1,
q = 1- P
0,
x
~
1,
Ie
<1>YHKllWI
F(x)
= i
k < x
~
k +
1,
pacrrpe.ueJIeHWI
{
c:L-.,
i~l
I
k =
1,
2,
...
,
r.ue c =
-ljln
q
<p
x
(t)
=
-c
In(l -
pI)
IIpoH3BOAHIUaH
<l>YHKllWI
il
XapaKTepHCTHqeCKaH
Xx(t) =
-c
In(l-
pe
) =
<l>yHKllWI
= 1-c In
[1
-£ i:
(it),1e
]
q
Ie~l
k.
- p
MaTeMaTmeCKoe
x =
c-
q
O)l(H)laHHe
x=1
Mo.ua
D =
cp(1
-
cp)
)lHcrrepCHH
x
q2
~cp(l-
cp)
CTaHAapTHOe
cr
x
=
q
OTKJIOHeHHe
K03<l><l>HllHeHT
V
x
=
~
cp
1
-1
BapHallHH
Sk
= 1+
p-3cp+
2
(cp)
2
ACHMMel'pWI
(l
-
cp)
~
cp
(1
-
cp)
Ex = 1+
4p
+
p2
-(7
+ 4p)
cp
+
12
(cp)
2
_6(Cp)l
3KCllecc
cp(l-
cp)"
_cp
_cp(l+p)
_cp(l+4p+p2)
HaqaJIbHbIe
m
2
-
-2
' m
l
- l
,m
4
-
4
q q q
MOMeHTbI
81