A(X)
.,.
f(x)
o
x
PRC.
1.4.
<I>YHKllWI
pHCKa
A(X) H llJIOTHOCTh BepOHTHOCTR
f(x)
HenpephIBHoH
cnyqaHHoH
BeJIHQHHhI.
Upo
U360iJJI.1U,
eit
rjJ
Y
H"
U,
U e it
u;eJI
Oq
H CJI e H
HO
H
cnyqaH-
HOH
BeJIHqHHbI
X Ha3bIBaeTCH TaKaH <PYHKIIHH .n;eHCTBHTeJIbHOH
rre-
peMeHHOH
t,
KOTOpaH rrpe.n;CTaBJIHeT
COGOH
MaTeMaTHqeCKOe O)l(Jf-
.n;aHHe
cnyqaHHoH
BeJIHqHHbI
t
X
:
.,
<Px(t)
=M(tx)
= I tXp(x),
Itl~
1.
x=o
IIpoH3Bo.n;HII.J;aH <PYHKIIIDI
<P
x (t)
cnyqaHHoH
BeJIHqHHbI
X o.n;-
H03HaqHO
orrpe.n;eJIHeT ·pacrrpe.n;eJIeHHe BepOHTHOCTeH
:3TOH
CJIyqaH-
HOH
BeJIHqHHbI:
p(O)
=
<px(O),
p(x)
= dX:xY)lt=o =
<p~X)(O)
(x
=1,2, ...
).
ECJIH X
I'
X2 ,
•••
, X n -
He3aBHCHMble
u;eJIOqHCJIeHHble
cnyqaH-
Hble
BeJIHqHHbI
H Y =
XI
+ X
2
+ ... + X
,
TO
n
n
<P.(t)
=<Px
(t)
<Px
(t) ...
<Px
(t) =I1<Px (t),
" I 2 " .t
k=1
T.
e.
rrpOH3BOMII.J;aH <PYHKIIIDI CYMMbI He3aBHCHMbIX u;eJIOqHCJIeH-
HbIX
CJIyqaHHbIX BeJIHqHH
paBHa
rrpOH3Be.n;eHHIO rrpOH3BOMII.J;HX
<PYHKIIHH CJIaraeMbIX. (3.n;eCb
<P
Xl
(t) - rrpOH3BOMII.J;aH <PYHKU;IDI
CJIyqaHHoH
BeJIHtlHHbI
X
k'
k =
1,
2,
...,n). ECJIH
CJIyqaHHble
CJIarae-
Mble
X
I'
••.
, X n rro.n;qHHHIOTCH O.n;HOMy H
TOMy
:x<:e
3aKOHY
pacrrpe.n;e-
JIeHIDI,
T.
e.
eCJIH
<P
X(t) =
<P
X(t) =
...
=
<P
X (t) =
<P
X(t),
TO
I 1 •
<Py(t)
=
[<px(t)]n.
IIycTb
X
1
,X
2
, ••• -
rrOCJIe.n;OBaTeJIbHOCTh He3aBHCHMbIX u;eJIO'IHC-
JIeHHbIX
O.n;HHaKOBO pacrrpe.n;eJIeHHbIX
cnyqaHHbIX
BeJIHqHH C
rrpOH3-
BOMII.J;eH <PYHKIIHeH
<P
X (t), N - He3aBHCHMaH
OT
HHX
u;eJIOqHCJIeH-
HaH
cnyqaHHaH
BeJIHqHHa
C rrpOH3BOMII.J;eH <PYHKIIHeit
<P
N (t), a
cny-
qaHHaH
BeJIHtlHHa
YN orrpe.n;eJIHeTCH paBeHCTBaMH
Y
N
=X
I
+X
2
+",+X
N
H
Yo
=0.
Tor.n;a
rrpOH3BOMII.J;aH <PYHKIIIDI
<PYN
(t)
cnyqaHHoH
BeJIHtlHHbI
YN orrpe.n;eJIHeTCH COOTHOIIIeHHeM
<PYN
(t) =
<PN(<px(t»,
T.
e.
rrpOH3BO)J;HII.J;aH <PYHKIIIDI
cnyqaHHoro
'lHCJIa
cnyqaHHbIX
CJIara-
eMbIX
paBHa
cyrreprr03HU;HH
rrpOH3BOMII.J;HX <PYHKIIHH
<P
N
(t)
H
<P
X (t).
X
apa"
mep U
emu
'I
ec"o
it
rjJy
H"
U,
ue it
cnyqaHHoH
BeJIHtlHHbI
X Ha3bIBaeTCH TaKaH <PYHKIIIDI .n;eHCTBHTeJIbHOH
rrepeMeHHoH
t,
KO-
TOpaH rrpe.n;CTaBJIHeT
COGOH
MaTeMaTHtleCKOe
O:x<:H.n;aHHe
cnyqaHHoH
Ux
BeJIHtlHHbI
e :
i=e
ux
p(x),
X
-u;eJIOqHCJIeHHaH;
Xx(t)
=M(e
UX
) =
x;,o
Je
Ux
f(x)
dx, X -
HerrpepbIBHaH,
\
....,
r.n;e
i =
~
-
MHHMaH
e.n;HHHu;a;
p(x)
=
P(X
= x), x =
0,
1,
2,
... -
<PYHKIIHH
BepoHTHoCTH
u;eJIOqHCJIeHHOH
CJIyqaHHoH
BeJIHtlHHbI
X;
f(x)
- IIJIOTHOCTh BepOHTHOCTH
HerrpepbIBHoH
cnyqaHHoit
BeJIH-
qHHbI
X
XapaKTepHCTHtIeCKaH
<PYHKIIHH
Xx
(t)
cnyqaHHoH
BeJIHtlHHbI
X
0.n;H03HaqHO orrpe.n;eJIHeT pacrrpe.n;eJIeHHe 3TOH
cnyqaHHoH
BeJIHqH-
HbI:
p(x)=_1
je-
ux
Xx(t)dt,X=O,I,
2,
... ;
f(x)=_1
je-uXXx(t)dt.
2n 2n
1
....,
XapaKTepHCTHtIeCKaH
<PYHKIIHH Xx(t) u;eJIOqHCJIeHHOH
cnyqaH-
HOH
BeJIHtlHHbI
X CBH3aHa C
ee
rrpOH3BO)J;HII.J;eH <PYHKIIHeH
cP
X
(t)
pa-
BeHCTBOM
Xx
(t)
=
<P
X (e
it
).
9
8