x =Y /
(Y
+
Z)
HMeeT
6eTa-paCnpe,lJ;eJleHHe
nepBOro
p0,lJ;a
C
napa-
MeTpaMH
U,
v.
5.
ECJlH
cJIyqaHHaH
BeJIlflIHHa
X
HMeeT
6eTa-pacnpe,lJ;eJleHHe
nepBoro
pO,lJ;a
C
napaMeTpaMH
U,
v,
TO
cJlyqaHHaH
BeJlHqHHa
Z =X /
(1-
X)
HMeeT
6eTa-paCnpe,lJ;eJleHHe BTOpOrO
pO,lJ;a
C
napa-
MeTpaMH
U, V, a CJIyqaHHaH
BeJlHqHHa
U =
(1
-
X)
/ X
HMeeT
6e-
Ta-paCnpe,lJ;eJleHHe
BToporo
pO,lJ;a
C
napaMeTpaMH
V,
u.
6.
CJlyqaHHaH
BeJllflIHHa
F(m,n), pacnpe,lJ;eJleHHaH
no
3aKoHy
cI>HIIIepa-CHe,lJ;eKOpa
C
m,
n
CTeneIDIMH
CBo6o,lJ;bI, H
cJlyqaHHaH
BeJlHqHHa
X
(m
/
2,
n/
2),
HMeIOrn;aH 6eTa-paCnpe,lJ;eJleHHe
nepBoro
pO,lJ;a
C
napaMeTpaMH
U =m/
2,
V =n /
2,
CB5I3aHbI
MeJK,D;y
C060H
cJle-
,D;yIOrn;HM
o6pa30M:
P{F(m,n)
<
x}
=
p{x(m
,!!..)
<~}
=I
mx/(n+mx)(m
,!!..).
2 2
n+mx
2 2
3Ta
lPoPMYJla n03BOJl5IeT HaxO,lJ;HTb 3HaqeHH5I
IPYHKIIHH
pacnpe-
,lJ;eJleHH5I
cI>HIIIepa-CHe,lJ;eKOpa
C nOMOrn;bIO
Ta6J1HIJ,
OTHOIIIeHH5I
HenOJlHOH
6eTa-IPYHKIIHH
I(u,
v)
(CM.,
HanpHMep,
[8]).
7.
CJlyqaHHa5I
BeJlHqHHa
T(v), pacnpe,lJ;eJleHHaH
no
3aKoHy
CTbIO,lJ;eHTa C v
CTeneIDIMH
CBo6o,lJ;bI, H
cJlyqaHHaH
BeJllflIHHa
X(v/2,
1/2), HMeIOrn;aH 6eTa-pacnpe,lJ;eJIeHHe
nepBoro
p0,lJ;a C
napa-
MeTpaMH
U = v/2, v = 1/2, CBH3aHbI
MeJK,D;y
C060H
COOTHOIIIeHHHMH:
P{T(v) < t}
=1-~P{X(~,~»
v:t
2
}=I-~Iv/(v+I')(~'~).
P{IT(v)l< t} =
I-P{X
(~,~)
>
v:
t2
} =
l-I
v
/(v+I')(
~
,~J
.
8.
)lJI5I
6HHOMHaJIbHOH
cJlyqaHHoH
BeJllfqHHbI
Y(n,p) H
cJlyqaH-
HOH
BeJIlflIHHbI
X
(y,
n - y +
1),
HMeIOrn;eH !3-pacnpe,lJ;eJleHHe
nep-
Boro
pO,D;a
C
napaMeTpaMH
U =
y,
v = n - y +
1,
cnpaBe,WIHBO COOT-
HOIIIeHHe
P{Y(n,p)~Y}=P{X(y,n-y+l)<p},
y=O,I,
...
,n.
9.
,ll.Jrn
cJIyqaHHoH
BeJlHqHHbI Z (m, p), HMeIOrn;eR OTpHlJ,aTeJlb-
Hoe
6HHOMHaJIbHOe pacnpe,D;eJleHHe 1 C
napaMeTpaMH
m,
p, H CJlY-
qaRHOH
BeJllfqHHbI
X(u,
v), HMeIOrn;eH 6eTa-paCnpe,lJ;eJleHHe
nep-
BOro
pO,lJ;a
C
napaMeTpaMH
U,
v,
cnpaBe,WIHBbI COOTHOIIIeHH5I
P{Z(m,p)
~
z} =
P{X(z,m)
<
1-
p} =
I-P{X(m,z)
<
pl.
10.
BeJlH
U H V -
HaTypaJIbHbIe
qHCJla,
TO
cJlyqaHHYIO
BeJllfqH-
BY
X
(U,
v),
HMeIOmyIO
6eTa-paCnpe,lJ;eJIeHHe
nepBoro
p0,lJ;a C
napa-
MeTpaMH
U,
v,
MOXl{O
npe,D;CTaBHTb B
Bane
OTHOIIIeHH5I
X U v =
Z(2u)
(
,)
Z(2u)
+
Z(2v)
214
r,lJ;e
Z(2u)
H
Z(2v)
- He3aBHCHMbIe
cJlyqaHHbIe
BeJllfqHHbI,
HMeIO-
lUHe
X
2
-pacnpe,lJ;eJleHHe C qHCJIOM
CTeneHeH
CBo60,lJ;bI
2u
H
2v
COOT-
BeTCTBeHHO.
11.
BeTa-paCnpe,lJ;eJleHHe nOHBJIHeTCH,
HanpHMep,
KaK
pac-
npe,lJ;eJleHHe
nopMKoBbIX
CTaTHCTHK. ECJlH
XI'
X
2
,..., X
n
He3a-
BHCHMbI H
paBHoMepHo
pacnpe,lJ;eJleHbI
Ha
HHTepBaJIe [0,
1]
H
X(ll' X(2),,,,,X(n) -
ynoPMOqeHHbIe
no
B03paCTaHHIO
BeJlHqHHbI
X1' X
2
,...
,X
n
,
TO
k-H
nOpMKOBaH
CTaTHCTHKa
X(k)
HMeeT
6eTa-
pacnpe,lJ;eJleHHe
nepBoro
po,lJ;a C
napaMeTpaMH
U = k H
V::
n - k +
1.
O~eHMBaHMe
napaMeTpOB
UO
=xo[XO(I-XO)
-1]
VO
::(I_XO)[XO(I-XO)
-1]
(MM).
S2'
S2
x x
f(x)
f(x)
u >
1,
v>
I
(u
< v)
4
4
3
3
2
2
0.5
x 0
o
f(x)
f(x)
5
5
u=l,v>1
2
4
4
3
3
0.5
u>l.
v=1
x
o
0.5
Plte. 3.42.
IlJIlJJ1IOCTb
sePOJITHOCTH
6e'ra-paenpe.neneHWI
nepBOro
po.na.
215