9.6 Generalized Algorithms 381
j<−b
i−1
+ τ
i
. From (9.43) and (9.36), noticing −b
i
−b
i
+ r
i
= −b
i−1
+ τ
i
,
applying Theorem 9.6.1, (9.41) holds. Since (9.37) holds and (9.44) holds for
c = i +1andj −b
i
= −b
i−1
+ τ
i
− r
i
, from the definition of g
c,n
,wehave
u
(c)
j+τ
i,c
+1
= g
c,n
(u
(c)
(j + τ
i,c
,p
c,c
+1),u
(c+1)
(j + τ
i,c+1
,p
c,c+1
+1),...,
u
(n)
(j + τ
i,n
,p
c,n
+1),x
(n)
(j + τ
i,n
,r
c,n
+ 1)) (9.46)
for c = i and j −b
i−1
.From−b
i
= −b
i−1
− r
i
+ τ
i
−b
i−1
+ τ
i
, (9.45)
holds for c = i +1,...,n and j −b
i−1
+ τ
i
. Replacing j in (9.45) by j + τ
i
,
it follows immediately that (9.46) holds for c = i +1,...,n and j −b
i−1
.
Therefore, (9.46) holds for c = i,...,n and j −b
i−1
. From (9.41), (9.44)
holds for c = i and j −b
i−1
; therefore, (9.44) holds for c = i,...,n and
j −b
i−1
. We conclude that (9.42) holds.
Especially, equation (9.41) and (9.42) hold for the case of i =1,thatis,
x
(0)
−b
0
x
(0)
−b
0
+1
...
= λ
1,n
(u
(1)
(−b
0
+ τ
1,1
,p
1,1
+1),u
(2)
(−b
0
+ τ
1,2
,p
1,2
+1),...,
u
(n)
(−b
0
+ τ
1,n
,p
1,n
+1),x
(n)
(−b
0
+ τ
1,n
− 1,r
1,n
), (9.47)
x
(n)
−b
0
+τ
1,n
x
(n)
−b
0
+τ
1,n
+1
...)
and
x
(0)
j
= f
1,n
(u
(1)
(j + τ
1,1
,p
1,1
+1),u
(2)
(j + τ
1,2
,p
1,2
+1),...,
u
(n)
(j + τ
1,n
,p
1,n
+1),x
(n)
(j + τ
1,n
,r
1,n
+1)), (9.48)
u
(c)
j+τ
1,c
+1
= g
c,n
(u
(c)
(j + τ
1,c
,p
c,c
+1),u
(c+1)
(j + τ
1,c+1
,p
c,c+1
+1),...,
u
(n)
(j + τ
1,n
,p
c,n
+1),x
(n)
(j + τ
1,n
,r
c,n
+1)),
c =1,...,n, j = −b
0
, −b
0
+1,...
Using Theorem 9.6.1, from (9.47), (9.39) and (9.48), we obtain
y
0
y
1
...= λ
0,n
(¯s, x
(n)
τ
0,n
x
(n)
τ
0,n
+1
...),
where ¯s = y(−1,t
0
), u
(0)
(τ
0,0
,p
0,0
+1), u
(1)
(τ
0,1
,p
0,1
+1), ..., u
(n)
(τ
0,n
,p
0,n
+
1), x
(n)
(τ
0,n
− 1,r
0,n
).
To prove s =¯s, letting (9.40) for j τ
0
, since (9.40) holds for 0 j<τ
0
,
(9.40) holds for j 0. From (9.48) and the definition of g
0,n
, noticing b
−1
τ
0
, this yields that
u
(0)
j+τ
0
+1
= g
0,n
(y(j − 1,t
0
),u
(0)
(j + τ
0,0
,p
0,0
+1),u
(1)
(j + τ
0,1
,p
0,1
+1),
...,u
(n)
(j + τ
0,n
,p
0,n
+1),x
(n)
(j + τ
0,n
,r
0,n
+ 1)) (9.49)