374 9. Finite Automaton Public Key Cryptosystems
From the definition of M
,wehave
z
0
z
1
...= λ
(s
,y
0
y
1
...).
Using (9.25) and (9.27), from the definition of M,weobtain
y
0
y
1
...= λ(s, x
0
x
1
...).
Thus
λ
(s
,x
0
x
1
...)=z
0
z
1
...= λ
(s
,λ(s, x
0
x
1
...)) = λ
(s, s
,x
0
x
1
...),
where λ
is the output function of C(M,M
). Therefore, s, s
and s
are
equivalent.
Let M = V,Z,Z
k
× W
n+1
× V
h
,δ,λ be a finite automaton, where
λ(z(−1,k),w(0,n+1),v(−1,h),v
0
)=z
0
,
δ(z(−1,k),w(0,n+1),v(−1,h),v
0
)=z(0,k),w(1,n+1),v(0,h),
z
0
= ϕ(z(−1,k),w(0,n+1),v(0,h+1)),
w
1
= ψ(z(−1,k),w(0,n+1),v(0,h+1)).
Let M
∗
= Z, V, V
h
× W
n+1
× Z
τ+k
,δ
∗
,λ
∗
be a finite automaton, where
λ
∗
(v(−1,h),w(0,n+1),z(−1,τ + k),z
0
)=v
0
,
δ
∗
(v(−1,h),w(0,n+1),z(−1,τ + k),z
0
)
= v(0,h),w(1,n+1),z(0,τ + k),
v
0
= ϕ
∗
τ
(v(−1,h),w(0,n+1),z(0,τ + k +1)),
w
1
= ψ(z(−τ − 1,k),w(0,n+1),v(0,h+1)).
We use PI
1
(M,M
∗
,τ) to denote the following condition: for any state
s
0
= z(−1,k),w(0,n+1),v(−1,h)
of M and any v
0
,v
1
,...∈ V ,if
z
0
z
1
...= λ(s
0
,v
0
v
1
...),
then
v
0
v
1
...= λ
∗
(s
∗
τ
,z
τ
z
τ+1
...),
where
s
∗
τ
= v(−1,h),w(0,n+1),z(τ − 1,τ + k).
We use PI
2
(M
∗
,M,τ) to denote the following condition: for any state