4.4 Canonical Diagonal Matrix Polynomial 145
and let eq
c
(i) be an equation
ϕ
c
(y(i + c, c + k +1))+[B
0c
,...,B
hc
]ψ
lh
μν
(u, x, i)=0,
where ϕ
c
and ϕ
c
are two single-valued mappings from Y
c+k+1
to Y , B
jc
and
B
jc
are m × l matrices over GF (q), j =0, 1,...,h.
An R
a
R
b
transformation sequence
eq
c
(i)
R
a
[P
c
]
−→ eq
c
(i),eq
c
(i)
R
b
[r
c+1
]
−→ eq
c+1
(i),c=0, 1,...,e (4.49)
is said to be (t, e) circular,if0 t e and B
j,e+1
= B
jt
, j =0, 1,...,h.
(4.49) is said to be circular,ifitis(t, e) circular, for some t.TheR
a
R
b
transformation sequence (4.49) is said to be terminating,ifthelastm − r
e+1
rows of B
j,e+1
are 0 in the case of r
t
<m, j =0, 1,...,h,andthefirstr
e+1
rows of B
0,e+1
are linearly independent over GF (q).
Let M = X, Y, Y
k
× U
h+μ+1
× X
h+ν
,δ,λ be a finite automaton over
GF (q) defined by
δ(y(i − 1,k),u(i, h + μ +1),x(i − 1,h+ ν),x
i
)
= y(i, k),u(i +1,h+ μ +1),x(i, h + ν),
λ(y(i − 1,k),u(i, h + μ +1),x(i − 1,h+ ν),x
i
)=y
i
,
where
y
i
= ϕ(y(i − 1,k)) + [B
0
,...,B
h
]ψ
lh
μν
(u, x, i),
u
i+1
= g(u(i, h + μ +1),x(i, h + ν +1)),
ϕ is a single-valued mapping from Y
k
to Y , B
0
, ..., B
h
are m × l matrices
over GF (q), and g is a single-valued mapping from U
h+μ+1
× X
h+ν+1
to U.
Let eq
0
(i) be the equation
−y
i
+ ϕ(y(i − 1,k)) + [B
0
,...,B
h
]ψ
lh
μν
(u, x, i)=0. (4.50)
For any state s = y(−1,k),u(0,h+ μ +1),x(−1,h+ ν) of M and any
nonnegative integer n,let
Y
s
n
= {λ(s, x
0
...x
n
) | x
0
,...,x
n
∈ X},
W
s
n
={w
0
...w
n
| w
i
= y
i
− ϕ(y
i−1
,...,y
i−k
),i=0, 1,...,n, y
0
...y
n
∈ Y
s
n
}.
Lemma 4.4.10. |W
s
n
| = |Y
s
n
|.
Proof. From the definition of W
s
n
,wehave|W
s
n
| |Y
s
n
|.LetM
w
= Y ,
Y , Y
k
, δ
w
, λ
w
be a k-order input-memory finite automaton defined by
w
i
= y
i
− ϕ(y
i−1
,...,y
i−k
),i=0, 1,...
Clearly, w
0
...w
n
∈ W
s
n
if and only if w
0
...w
n
= λ
w
(y
−1
,...,y
−k
,y
0
...y
n
)
for some y
0
...y
n
∈ Y
s
n
.SinceM
w
is weakly invertible with delay 0, we have
|W
s
n
| < |Y
s
n
|.Thus|W
s
n
| = |Y
s
n
|.