4.4 Canonical Diagonal Matrix Polynomial 135
1 k j +1 and 1 j t − 1. It follows immediately that degrees
of elements in columns r
k
+1 to r
k+1
of
¯
P (z)areatmostt − k − 1for
k =0, 1,...,t− 1.
Theorem 4.4.1. Let (4.40) be an elementary R
a
R
b
transformation se-
quence. Let m
1
= r
1
,m
j
= r
j
− r
j−1
,j=2,...,t. Then there exists an
m × m invertible matrix polynomial
¯
P (z) such that degrees of elements in
columns r
k
+1 to r
k+1
of
¯
P (z) are at most t − k − 1 for k =0, 1,...,t− 1,
and
C
0
(z)=
¯
P (z)DIA
m,m
(E
m
1
,zE
m
2
,...,z
t−1
E
m
t
,z
t
E
m−r
t
)C
t
(z),
where r
0
=0, r
i
= r
i
, i =1,...,t− 1,andr
t
= m.
Proof. From Lemma 4.4.1,
C
t
(z)=I
−1
m,r
t
P
t−1
I
−1
m,r
t−1
P
t−2
...I
−1
m,r
1
P
0
C
0
(z).
Thus
C
0
(z)=P
−1
0
I
m,r
1
P
−1
1
I
m,r
2
...P
−1
t−2
I
m,r
t−1
P
−1
t−1
I
m,r
t
C
t
(z).
Using Lemma 4.4.2, it follows immediately that there exists an m× m invert-
ible matrix polynomial
¯
P (z) such that degrees of elements in columns r
k
+1
to r
k+1
of
¯
P (z)areatmostt − k − 1fork =0, 1,...,t− 1, and
C
0
(z)=
¯
P (z)DIA
m,m
(E
m
1
,zE
m
2
,...,z
t−1
E
m
t
,z
t
E
m−r
t
)C
t
(z).
Corollary 4.4.1. Let (4.40) be a terminating and elementary R
a
R
b
trans-
formation sequence. Let m
1
= r
1
,m
j
= r
j
−r
j−1
,j=2,...,t.Thenthereex-
ists an m×m invertible matrix polynomial
¯
P (z) such that degrees of elements
in columns r
k
+1 to r
k+1
of
¯
P (z) are at most t − k − 1 for k =0, 1,...,t− 1,
and
C
0
(z)=
¯
P (z)DIA
m,r
t
(E
m
1
,zE
m
2
,...,z
t−1
E
m
t
)
¯
Q(z), (4.42)
where r
0
=0,r
i
= r
i
,i=1,...,t− 1,r
t
= m, and
¯
Q(z) is the first r
t
rows
of C
t
(z).
Corollary 4.4.2. Let (4.40) be a terminating and elementary R
a
R
b
trans-
formation sequence. Then the rank of C
0
(z) is r
t
.
Proof.Letr be the rank of C
0
(z). Since
¯
P (z) is invertible, from (4.42),
the rank of C
(z)=DIA
m,r
t
(E
m
1
, zE
m
2
, ..., z
t−1
E
m
t
)
¯
Q(z)isr.Itis
easy to see that any k-order minor of C
(z) equals 0 if k>r
t
.Onthe
other hand, since
¯
Q(0) is row independent, there exists a nonzero r
t
-order
minor
¯
Q(1,...,r
t
; j
1
,...,j
r
t
; z)of
¯
Q(z). It follows that the r
t
-order minor
C
(1,...,r
t
; j
1
,...,j
r
t
; z) is nonzero. Thus r
t
is the rank of C
(z). It follows
that r = r
t
.