53
Рисунок 3.8 – Автомат Мура, эквивалентный автомату
А
3.2.3 Минимизация преобразователей. Метод Ауфен-
кампа и Хона
Рассмотрим метод минимизации полностью определен-
ных автоматов, предложенный Ауфенкампом и Хоном.
Основная идея этого метода, так же, как и для автома-
тов-распознавателей, заключается в разбиении всех состоя-
ний исходного абстрактного автомата на попарно непересе-
кающиеся классы
эквивалентных состояний и замене каждо-
го класса эквивалентности одним состоянием. Получающий-
ся в результате минимальный автомат имеет столько состоя-
ний, на сколько классов эквивалентности разбиваются со-
стояния исходного автомата.
Для автоматов Мили первоначально выделяются 1-
эквивалентные состояния, в которых реакции автомата в этих
состояниях на всевозможные входные слова совпадают. Объ-
единение
всех 1-эквивалентных состояний абстрактного ав-
томата образует 1-класс эквивалентности. Затем классы 1-
эквивалентных состояний разбиваются на классы 2-
эквивалентных состояний и т.д. Если для некоторого i раз-
биения состояний автомата на ( i +1) - классы совпадает с
разбиением на i-классы, то оно является требуемым разбие-
нием на классы эквивалентности, при этом такое разбиение
может быть получено
за конечное число шагов.
При минимизации полностью определенных автоматов
Мура вводится понятие 0-эквивалентности состояний и раз-
биение множества состояний на 0-эквивалентные классы: к
такому классу относятся одинаково отмеченные состояния
автомата Мура.Если два 0-эквивалентных состояния любым
входным сигналом переводятся в два 0-эквивалентных со-
стояния, то они называются 1-эквивалентными. Все даль-
нейшие классы эквивалентности состояний для автомата Му-
ра определяются аналогично приведенному для автоматов