Файлы
Обратная связь
Для правообладателей
Найти
Семушин И.В. Практикум по методам оптимизации
Файлы
Академическая и специальная литература
Математика
Методы оптимизации
Назад
Скачать
Подождите немного. Документ загружается.
x
y
(
x,
y
)
x
y
A
A
=
{
(
x,
y
)
∈
I
R
×
I
R
:
x
=
y
}
A
A
A
A
=
{
x
:
(
x,
y
)
∈
A
y
}
.
A
A
A
A
=
{
y
:
(
x,
y
)
∈
A
x
}
.
f
(
x,
y
)
∈
f
(
x,
y
∗
)
∈
f
y
=
y
∗
{
1
,
2
,
.
.
.
,
n
}
n
n
{
1
,
2
,
.
.
.
,
n
}
n
I
R
n
I
R
n
n
n
n
n
x
x
=
(
x
1
,
x
2
,
.
.
.
x
n
)
I
R
n
n
x
=
(
x
1
,
x
2
,
.
.
.
x
n
)
x
=
(
x
1
,
x
2
,
.
.
.
x
n
)
T
x
T
=
(
x
1
,
x
2
.
.
.
x
n
)
←
−
−
P
Q
P
Q
p,
q
∈
I
R
n
θ
p
+
(1
−
θ
)
q
,
0
≤
θ
≤
1
.
q
+
θ
(
p
−
q
)
0
≤
θ
≤
1
,
q
θ
(0
≤
θ
≤
1)
(
p
−
q
)
Q
P
θ
γ
,
γ
=
1
−
θ
P
Q
S
∀
p,
q
∈
S
:
θ
p
+
(1
−
θ
)
q
∈
S,
0
≤
θ
≤
1
,
S
S
S
b
∈
S
S
p,
q
∈
S
b
=
θp
+
(1
−
θ
)
q
0
<
θ
<
1
P
1
,
P
2
,
.
.
.
P
k
p
1
,
p
2
,
.
.
.
p
k
y
=
θ
1
p
1
+
θ
2
p
2
+
.
.
.
θ
k
p
k
,
k
X
i
=1
θ
i
=
1
,
0
≤
θ
i
,
i
=
1
,
k
.
θ
i
P
1
,
P
2
y
2
=
k
2
p
2
+
(1
−
k
2
)
p
1
,
0
≤
k
2
≤
1
,
P
1
P
2
.
P
3
y
3
=
k
3
p
3
+
(1
−
k
3
)
y
2
=
k
3
p
3
+
(1
−
k
3
)
k
2
p
2
+
(1
−
k
3
)(1
−
k
2
)
p
1
,
0
≤
k
3
≤
1
,
P
1
P
2
P
3
P
4
y
4
=
k
4
p
4
+
(1
−
k
4
)
y
3
=
k
4
p
4
+
(1
−
k
4
)
k
3
p
3
+
+(1
−
k
4
)(1
−
k
3
)
k
2
p
2
+
(1
−
k
4
)(1
−
k
3
)(1
−
k
2
)
p
1
,
0
≤
k
4
≤
1
,
P
1
P
2
P
3
P
4
P
5
y
4
y
5
=
k
5
p
5
+(1
−
k
5
)
y
4
=
=
k
5
p
5
+(1
−
k
5
)(
k
4
p
4
+(1
−
k
4
)(
k
3
p
3
+(1
−
k
3
)(
k
2
p
2
+(1
−
k
2
)
p
1
)))
,
0
≤
k
5
≤
1
,
P
1
P
2
P
3
P
4
P
5
y
5
=
θ
5
p
5
+
θ
4
p
4
+
θ
3
p
3
+
θ
2
p
2
+
θ
1
p
1
,
θ
5
=
k
5
θ
4
=
(1
−
k
5
)
k
4
θ
3
=
(1
−
k
5
)(1
−
k
4
)
k
3
θ
2
=
(1
−
k
5
)(1
−
k
4
)(1
−
k
3
)
k
2
θ
1
=
(1
−
k
5
)(1
−
k
4
)(1
−
k
3
)(1
−
k
2
)
θ
i
θ
1
+
θ
2
+
θ
3
+
θ
4
+
θ
5
=
1
,
θ
i
≥
0
,
i
=
1
,
5
.
θ
i
,
0
≤
θ
i
≤
1
k
5
=
θ
5
,
0
≤
k
5
≤
1;
k
4
=
θ
4
(1
−
θ
5
)
=
θ
4
(
θ
1
+
θ
2
+
θ
3
+
θ
4
)
,
0
≤
k
4
≤
1;
k
3
=
θ
3
(1
−
θ
5
−
θ
4
)
=
θ
3
(
θ
1
+
θ
2
+
θ
3
)
,
0
≤
k
3
≤
1;
k
2
=
θ
2
(1
−
θ
5
−
θ
4
−
θ
3
)
=
θ
2
(
θ
1
+
θ
2
)
,
0
≤
k
2
≤
1
.
k
2
,
k
3
,
k
4
k
5
(
k
2
)
(
k
3
)
(
k
4
)
(
k
5
)
p
1
,
p
2
,
.
.
.
,
p
k
θ
1
+
θ
2
+
.
.
.
+
θ
k
=
1
θ
i
y
=
θ
1
p
1
+
θ
2
p
2
+
.
.
.
+
θ
k
p
k
.
f
A
f
,
f
A
f
A
A
f
A
(
t
)
=
f
(
t
)
t
∈
A
.
f
f
n
C
⊆
f
f
C
f
(
x
)
n
x
=
(
x
1
,
x
2
,
.
.
.
,
x
n
)
f
1
(
x
)
,
.
.
.
,
f
n
(
x
)
f
i
(
x
)
=
∂
f
(
x
)
/∂
x
i
f
x
n
grad
f
(
x
)
≡
(
f
1
(
x
)
,
.
.
.
,
f
n
(
x
))
.
f
n
f
f
−
grad
f
(
x
)
f
f
n
f
f
Ax
=
b,
A
=
A
(
m,
n
)
,
rank
A
=
m,
(
m
<
n
)
,
x
∈
I
R
n
,
b
∈
I
R
m
x,
x
≥
0
∀
i
:
x
i
≥
0
min
x
c
T
x
c
∈
I
R
n
c
=
(
c
1
,
c
2
,
.
.
.
,
c
n
)
z
=
c
T
x
grad
z
=
c
x
∈
I
R
n
m
×
m
m
×
(
n
+
1)
A
a
=
[
A
|
b
]
X
I
R
n
Ax
=
b,
x
≥
0
X
X
=
{
x
∈
I
R
n
:
Ax
=
b,
x
≥
0
}
x,
y
X
Ax
=
b,
x
≥
0;
Ay
=
b,
y
≥
0
.
w
w
=
αx
+
β
y
,
α
+
β
=
1
,
α
≥
0
,
β
≥
0
,
w
≥
0
.
Aw
=
A
(
αx
+
β
y
)
=
αAx
+
β
Ay
=
α b
+
β
b
=
(
α
+
β
)
b
=
b
Aw
=
b,
w
≥
0
x
=
P
µ
B
−
1
b
O
¶
,
P
A
AP
=
[
B
|
R
]
B
m
×
m
O
(
n
−
m
)
R
(
n
−
m
)
B
¡
n
m
¢
=
n
!
m
!(
n
−
m
)!
m
A
n
P
m
A
B
Ax
=
b
AP
y
=
b
y
=
P
−
1
x
y
y
=
(
y
B
,
y
F
)
,
y
B
m
y
F
(
n
−
m
)
y
B
=
B
−
1
b
−
B
−
1
Ry
F
,
y
=
µ
B
−
1
b
−
B
−
1
Ry
F
y
F
¶
.
y
AP
y
=
b
y
F
y
=
µ
B
−
1
b
O
¶
.
x
x
=
P
y
x
x
=
P
y
,
n
−
m
y
F
y
AP
y
=
b
m
x
=
P
y
P
P
a
i
∈
I
R
m
,
i
=
1
,
n
A
A
=
[
a
1
,
a
2
,
.
.
.
,
a
n
]
.
x
1
a
1
+
x
2
a
2
+
.
.
.
+
x
n
a
n
=
b.
A
rank
A
=
m
n
m
C
m
n
=
¡
n
m
¢
=
n
!
m
!(
n
−
m
)!
n
m
x
i
a
i
m
x
=
(
x
1
,
x
2
,
.
.
.
,
x
n
)
x
i
≥
0
i
=
1
,
n
x
=
(
x
1
,
x
2
,
.
.
.
,
x
n
)
a
i
x
i
x
=
(
x
1
,
x
2
,
.
.
.
,
x
n
)
a
i
x
i
,
x
i
>
0
r
m,
r
≤
m
a
i
m
‹
1
2
3
4
5
6
7
8
...
14
15
›