
Propositional Proof Complexity
and Cellular Automata 27
[24] W. Craig, Three uses of the Herbrand-Gentzen theorem in relating model theory and
proof theory, Journal of Symbolic Logic, 22(3), (1957), pp. 269-285.
[25] M. Davis, Computability and Unsolvability, Dover Pubblications, Inc, New York, (1958).
[26] M. Davis and H. Putnam, A computing procedure for quantification theory, Journal of the
ACM, 7(3), pp. 210-215.
[27] M. Delorme and J. Mazoyer, editors, Cellular Automata: a parallel model, Mathematics and
its Application, Springer, (1998).
[28] B. Durand, Inversion of 2D cellular automata: some complexity results, Theoretical
Computer Science, 134, (1994), pp.387-401.
[29] M. R. Garey and D.S. Johnson, Computers and Intractability - A guide to the theory of the
NP-completeness, W. H. Freeman, (1979).
[30] A. Goerdt, Cutting planes versus Frege proof systems, in: Computer Science Logic:4th
workshop, CSL ’90, E. borger and et al., eds, Lecture Notes in Computer Science,
Spriger-verlag, (1991), pp.174-194.
[31] D. Hilbert and W. Ackermann, Principles of Mathematical Logic, New York, (1950).
[32] K. Iwama and S. Miyazaki, Tree-like Resolution is superpolinomially slower then
dag-like resolution for the Pigeonhole Principle, in A. Aggarwal and C.P. Rangan,
editors, Proceedings: Algorithms and Computation, 10th International Symposium, ISAAC’99,
Vol. 1741, (1999), pp 133-143.
[33] J. Kari, Reversibility of 2D cellular automata undecidable, Physica, D(45), (1990), 379-385.
[34] J. Kari, Reversibility and surjectivity problems of cellular automata, Jour. Comput. System
Scie., 48, (1994), pp. 149-182.
[35] J. Kari, Reversible Cellular Automata, Proceedings of DLT 2005, Developments in Language
Theory, Lecture Notes in Computer Science,3572, pp. 57-68, Springer-Verlag, (2005).
[36] J. Kari, Theory of cellular automata: A survey, Theoretical Computer Science, 334, (2005),
pp. 3-33.
[37] J. Krajíˇcek, Bounded arithmetic, propositional logic, and complexity theory,Encyclopediaof
Mathematics and Its Applications, 60, Cambridge University Press, (1995).
[38] J. Krajíˇcek, Propositional proof complexity I., Lecture notes, available at
http://www.math.cas.cz/krajicek/biblio.html.
[39] J. Krajíˇcek, Dehn function and length of proofs, International Journal of Algebra and
Computation, 13(5),(2003), pp.527-542.
[40] J. Krajíˇcek, Lower bounds to the size of constant-depth propositional proofs, Journal of
Symbolic Logic, 59(1), (1994), pp.73-86.
[41] J. Krajíˇcek, Interpolation theorems, lower bounds for proof systems, and indipendence
results for bounded arithmetic, Journal of Symbolic Logic, 62(2), (1997), pp. 457-486.
[42] L. Levin, Universal search problem (in russian), Problemy Peredachi Informatsii 9, (1973),
115-116.
[43] E.F. Moore, Machine models of self-reproduction, Proc. Symp. Appl. Math. Soc., 14, (1962),
pp. 13-33.
[44] J. Myhill, The converse to Moore’s garden-of-Eden theorem, Proc.Amer.Math.Soc., 14,
(1963), pp.685-686.
[45] D. Mundici, NP and Craig’s interpolation theorem, Proc. Logic Colloquium
1982,North-Holland, (1984), pp. 345-358.
[46] J. von Neumann, The General and Logical Theory of Automata, in Collected Works,vol.5,
Pergamon Press, New York, (1963), pp. 288-328.
[47] J. von Neumann, Theory of Self-reproducting automata, ed. W. Burks, University of Illinois
Press, Chicago, (1966).
483
Propositional Proof Complexity and Cellular Automata