РЕГРЕССИОННЫЙ АНАЛИЗ ФОРМЫ РАКОВИНЫ
23
вины с помощью формальных показателей. Одним из них являются отношения раз-
меров раковин – габитуальные индексы, которые издавна используются в системати-
ческих целях (Odner, 1915; Мосевич, 1928; Месяцев, 1931; Филатова, 1951;
Allen,1954; Ockelmann, 1958; Наумов, 1976, а, б, 1979, а; Наумов и др., 1983, 1987;
Агарова, 1979; Федяков, 1986 и др.).
Желание нормировать один из линейных размеров другим для получения относи-
тельно стабильного показателя пропорций, характерных для данного вида, вполне
понятно (традиционный способ измерения раковины двустворчатого моллюска и
обозначения стандартных промеров приведены на рис. 3), однако, к сожалению, до
самого последнего времени почти не изучалось постоянство индексов на протяжении
постларвального онтогенеза двустворчатых моллюсков. Из старых работ можно на-
звать лишь труды И. И. Месяцева и Н. А. Мосевича, которые попытались исследо-
вать возрастную динамику отношения высоты раковины к ее длине у Portlandia
arctica и получили противоположные результаты. Н. А. Мосевич (1928) разделил
выборку портландий на две части (моллюски с высотой раковины более и менее
6 мм) и установил, что крупные экземпляры относительно более вытянуты, чем мел-
кие. И. И. Месяцев (193l), разделив моллюсков на экземпляры короче и длиннее
20 мм, возрастной динамики пропорций не обнаружил. Полученные этими авторами,
казалось бы, противоречивые результаты полностью соответствуют истинному по-
ложению вещей. Возрастная динамика габитуальных индексов без труда выявляется,
если разделить выборку на размерные классы с интервалом в 1 мм (Наумов,
1976, а, б; 1979). При этом зависимость между длиной раковины и отношением ли-
нейных размеров оказывается довольно тесной. Это характерно не только для порт-
ландий: практически у любого выбранного наугад вида обнаруживаются довольно
тесные корреляции между длиной раковины и одним или двумя габитуальными ин-
дексами (Наумов, Федяков, 1985, г; Федяков, 1986). Применение последних в систе-
матике требует осторожности, так как a priori не известно, каким образом данный
конкретный индекс зависит от длины раковины у того или иного вида. Впрочем, бы-
ло подмечено, что индекс, связывающий высоту раковины с ее толщиной, у форм с
ортогирными макушками с возрастом практически не изменяется. В остальных же
случаях он подвержен возрастной динамике, причем в тем большей степени, чем
сильнее загнуты вперед или назад макушки. Возрастные изменения двух других ин-
дексов не имеют столь четкой корреляции с формой раковины (Наумов и др., 1987).
Эти соображения послужили основанием для проведения специального исследо-
вания зависимости габитуальных индексов от длины раковины, которое и было вы-
полнено совместно с В. В. Федяковым (Наумов, Федяков, 1985, г). Нами было иссле-
довано 129 выборок двустворчатых моллюсков преимущественно из Белого моря,
относящихся к 32 видам из различных семейств. Всего было промерено 6928 экз.
Размеры раковин измерялись штангенциркулем с точностью до 0.1 мм. Для каждой
выборки отдельно вычислялись коэффициенты регрессии l по h, h по b и b по l (R
1
, R
2
и R
3
), свободные члены уравнения (a
1
,
а
2
и a
3
), отношения l/h, l/b и h/b (J
1
, J
2
и J
3
) а
также статистические ошибки всех J и R.
Выяснилось, что в некоторых случаях отдельные показатели формы раковин в
пределах одного вида, но в разных популяциях, оказываются связанными с длиной то
положительной, то отрицательной корреляцией. Складывается впечатление, что про-
порции раковины двустворчатых моллюсков зависят от случайных причин и не могут
служить систематическими признаками. В такой ситуации было бы логично ожидать
низкие значения коэффициентов корреляций между линейными размерами.