
21
ɂɡ (3.4), (3.5), (3.7) ɫɥɟɞɭɟɬ, ɱɬɨ ɤɚɠɞɨɣ ɬɪɨɣɤɟ ɱɢɫɟɥ m, n, p ɫɨɨɬɜɟɬɫɬɜɭɟɬ
ɫɨɛɫɬɜɟɧɧɨɟ ɤɨɥɟɛɚɧɢɟ, ɢɦɟɸɳɟɟ ɫɨɛɫɬɜɟɧɧɭɸ ɱɚɫɬɨɬɭ f ɢ ɫɨɛɫɬɜɟɧɧɭɸ
ɞɥɢɧɭ ɜɨɥɧɵ Ȝ:
222
2
¸
¹
·
¨
©
§
+
¸
¹
·
¨
©
§
+
¸
¹
·
¨
©
§
=
l
p
b
n
a
mc
f (3.8)
222
2
¸
¹
·
¨
©
§
+
¸
¹
·
¨
©
§
+
¸
¹
·
¨
©
§
=
l
p
b
n
a
m
h
(3.9)
ȿɫɥɢ ɫɪɟɞɢ ɱɢɫɟɥ m, n, p ɧɟɬ ɧɭɥɟɣ, ɬɨ ɬɚɤɨɣ ɬɪɨɣɤɟ ɫɨɨɬɜɟɬɫɬɜɭɸɬ ɞɜɚ
ɫɨɛɫɬɜɟɧɧɵɯ ɤɨɥɟɛɚɧɢɹ ɫ ɨɞɧɨɣ ɢ ɬɨɣ ɠɟ ɱɚɫɬɨɬɨɣ, ɧɨ ɫ ɪɚɡɥɢɱɧɨɣ
ɫɬɪɭɤɬɭɪɨɣ ɩɨɥɹ. ȿɫɥɢ ɫɨɛɫɬɜɟɧɧɨɣ ɱɚɫɬɨɬɟ ɫɨɨɬɜɟɬɫɬɜɭɸɬ ɞɜɚ ɢɥɢ ɛɨɥɟɟ
ɫɨɛɫɬɜɟɧɧɵɯ ɤɨɥɟɛɚɧɢɹ, ɬɨ ɝɨɜɨɪɹɬ ɨ ɧɚɥɢɱɢɢ ɜɵɪɨɠɞɟɧɢɹ, ɢ ɞɚɧɧɚɹ
ɫɨɛɫɬɜɟɧɧɚɹ ɱɚɫɬɨɬɚ ɧɚɡɵɜɚɟɬɫɹ ɜɵɪɨɠɞɟɧɧɨɣ ɢɥɢ ɤɪɚɬɧɨɣ.
ɂɧɞɟɤɫɵ m, n, p ɨɩɪɟɞɟɥɹɸɬ ɧɚɩɪɚɜɥɟɧɢɹ ɪɚɫɩɪɨɫɬɪɚɧɟɧɢɹ ɩɥɨɫɤɢɯ
ɜɨɥɧ, ɧɚ ɤɨɬɨɪɵɟ ɪɚɡɥɚɝɚɟɬɫɹ ɩɨɥɟ ɫɨɛɫɬɜɟɧɧɵɯ ɤɨɥɟɛɚɧɢɣ ɪɟɡɨɧɚɬɨɪɚ.
Ⱦɜɭɤɪɚɬɧɨɟ ɜɵɪɨɠɞɟɧɢɟ ɫɨɛɫɬɜɟɧɧɵɯ ɱɚɫɬɨɬ,
ɨ ɤɨɬɨɪɨɦ ɝɨɜɨɪɢɥɨɫɶ ɜɵɲɟ,
ɮɢɡɢɱɟɫɤɢ ɫɜɹɡɚɧɨ ɫ ɬɟɦ, ɱɬɨ ɩɪɢ ɞɚɧɧɨɦ ɧɚɩɪɚɜɥɟɧɢɢ ɪɚɫɩɪɨɫɬɪɚɧɟɧɢɹ
ɩɥɨɫɤɨɣ ɜɨɥɧɵ ɟɺ ɩɨɥɹɪɢɡɚɰɢɹ ɦɨɠɟɬ ɛɵɬɶ ɩɪɨɢɡɜɨɥɶɧɨɣ.
Ɉɫɨɛɨɟ ɩɨɥɨɠɟɧɢɟ ɡɚɧɢɦɚɸɬ ɫɨɛɫɬɜɟɧɧɵɟ ɤɨɥɟɛɚɧɢɹ, ɭ ɤɨɬɨɪɵɯ ɨɞɢɧ
ɢɡ ɢɧɞɟɤɫɨɜ ɪɚɜɟɧ ɧɭɥɸ. Ⱦɥɹ ɩɪɢɦɟɪɚ, ɬɪɨɣɤɟ ɱɢɫɟɥ m, n, p ɫɨɨɬɜɟɬɫɬɜɭɟɬ
ɷɥɟɤɬɪɨɦɚɝɧɢɬɧɨɟ ɩɨɥɟ
b
yn
Sin
a
xm
ɋSinE
z
=
b
yn
Cos
a
xm
CSin
ikb
n
H
x
= (3.10)
b
yn
Sin
a
xm
CCos
ika
m
H
y
<=
0===
zyx
HEE
ȿɫɥɢ ɜ ɧɨɥɶ ɨɛɪɚɳɚɸɬɫɹ ɞɜɚ ɢɧɞɟɤɫɚ, ɬɨ ɩɨɥɟ ɬɨɠɞɟɫɬɜɟɧɧɨ ɢɫɱɟɡɚɟɬ.
Ɍɚɤɢɟ ɬɪɨɣɤɢ ɢɧɞɟɤɫɨɜ ɫɨɛɫɬɜɟɧɧɵɯ ɤɨɥɟɛɚɧɢɣ ɧɟ ɞɚɸɬ. ɋɨɝɥɚɫɧɨ (1.10)
ɩɨɥɟ ɢɦɟɟɬ ɫɨɛɫɬɜɟɧɧɭɸ ɱɚɫɬɨɬɭ:
22
2
¸
¹
·
¨
©
§
+
¸
¹
·
¨
©
§
=
b
n
a
mc
f (3.11)
22
ɉɪɨɫɬɟɣɲɟɟ ɤɨɥɟɛɚɧɢɟ ɜ ɩɨɥɨɫɬɢ ɩɨɥɭɱɚɟɬɫɹ ɩɪɢ ɡɧɚɱɟɧɢɢ
ɤɨɷɮɮɢɰɢɟɧɬɨɜ m=1, n=1, p=0. ɷɬɨ ɤɨɥɟɛɚɧɢɟ ɨɛɨɡɧɚɱɚɸɬ 110. ɉɪɢ ɭɫɥɨɜɢɢ
ɚ>
l, b >l ɨɧɨ ɢɦɟɟɬ ɱɚɫɬɨɬɭ:
22
22
2
11
2
ba
ab
ɫ
ba
c
f +=
¸
¹
·
¨
©
§
+
¸
¹
·
¨
©
§
= (3.12)
ɗɬɚ ɱɚɫɬɨɬɚ ɛɭɞɟɬ ɧɚɢɦɟɧɶɲɟɣ ɫɪɟɞɢ ɜɫɟɯ ɱɚɫɬɨɬ, ɨɩɪɟɞɟɥɹɟɦɵɯ
ɮɨɪɦɭɥɨɣ (3.8).
Ʉɨɥɟɛɚɧɢɟ ɪɟɡɨɧɚɬɨɪɚ ɧɚɡɵɜɚɸɬɫɹ ɨɫɧɨɜɧɵɦ ɤɨɥɟɛɚɧɢɟɦ, ɟɫɥɢ ɨɧɨ
ɢɦɟɟɬ ɧɚɢɧɢɡɲɭɸ ɫɨɛɫɬɜɟɧɧɭɸ ɱɚɫɬɨɬɭ.
Ʉɨɥɟɛɚɧɢɟ 110 ɹɜɥɹɟɬɫɹ ɨɫɧɨɜɧɵɦ ɤɨɥɟɛɚɧɢɟɦ ɩɪɹɦɨɭɝɨɥɶɧɨɝɨ
ɪɟɡɨɧɚɬɨɪɚ. ɋɬɪɭɤɬɭɪɚ ɷɥɟɤɬɪɢɱɟɫɤɨɝɨ ɩɨɥɹ
r
ɷɬɨɝɨ ɤɨɥɟɛɚɧɢɹ ɩɪɢɜɟɞɟɧɚ
ɧɚ Ɋɢɫ. 9.
_________
r
,
-------------
r
Ɋɢɫ.9
ɗɥɟɤɬɪɢɱɟɫɤɢɟ ɫɢɥɨɜɵɟ ɥɢɧɢɢ ɨɛɪɚɡɭɸɬ ɩɭɱɨɤ ɩɪɹɦɵɯ ɩɚɪɚɥɥɟɥɶɧɵɯ
ɨɫɢ z. ɉɭɱɨɤ ɧɚɢɛɨɥɟɟ ɝɭɫɬɨɣ ɩɪɢ
2/,2/ byax == . Ɇɚɝɧɢɬɧɵɟ ɫɢɥɨɜɵɟ
ɥɢɧɢɢ ɨɯɜɚɬɵɜɚɸɬ ɷɬɨɬ ɩɭɱɨɤ ɡɚɦɤɧɭɬɵɦɢ ɤɨɥɶɰɚɦɢ. Ʉɨɥɟɛɚɧɢɹ 110
ɧɚɡɵɜɚɸɬ ɤɨɥɟɛɚɧɢɹɦɢ
110
E .
4. ȼɨɥɧɵ ɬɢɩɨɜ ȿ ɢ ɇ ɜ ɜɨɥɧɨɜɨɞɚɯ ɤɪɭɝɥɨɝɨ ɫɟɱɟɧɢɹ
ȼɜɟɞɟɦ ɰɢɥɢɧɞɪɢɱɟɫɤɭɸ ɫɢɫɬɟɦɭ ɤɨɨɪɞɢɧɚɬ
),,( zr
, ɩɪɢɜɟɞɟɧɧɭɸ
ɧɚ Ɋɢɫ. 10.