121
Надійність значень показника
i
M
оцінимо з використанням формули
(7.21), підставивши до неї результати обчислень (див. 9-й стовпець табл.7.3),
отримаємо
24.3
20
5.14
2n
M
m
1
M
1
===
;
74.5
20
7.25
2n
M
m
2
M
2
===
;…;
.4
20
0.22
2n
M
m
10
M
10
===
.
Узагальнимо отримані в процесі математичної обробки результати. З ураху-
ванням компенсації систематичної похибки середньоквадратична похибка оди-
ниці ваги подвійних вимірювань склала 12.7 мм/км., що при сумарному значенні
довжини ходу
0.55
L
км. складає незначну величину. У цому випадку можна
стверджувати, що подвійні вимірювання проведені з достатньою точністю.
Решта показників
i
m
і
i
M
характеризують точність подвійних вимірювань
кожного ходу. Аналіз 8-го і 9-го стовпців табл. 7.3 показують, що найбільш
грубий результат отриманий при вимірюванні 4 ходи. Порівнюючи показники
точності оцінок і їх надійності, можна стверджувати про достатньо високу точ-
ність вимірювань і їх надійності.
Таким чином, розглянуті загальні положення і особливості подвійних
вимірювань. На цій основі розглянуті процедури і показники оцінювання
точності за різницями подвійних рівноточних і нерівноточних вимірювань. По-
казано, що оцінка надійності є складовою частиною оцінювання точності
результатів вимірювання. Приклади, розглянуті у цому розділі сприяють кра-
щому засвоєнню логіки математичних перетворень.
Додаткові джерела інформації
1.
Бурмистров, Г.А. Теория математической обработки геодезических измерений
[Текст]: пособие / Г.А. Бурмистров, В.Д.Большаков. – М.: Недра, 1969. – 400 с.
2.
Войславский, Л.К. Теория математической обработки геодезических изме-
рений. Часть 1. Теория погрешностей измерений [Текст] учебно-методическое
пособие (для студентов 2 курса дневной формы обучения спец. 7.070908 «Гео-
информационные системы и технологии») / Л.К. Войславский. – Х.: ХНАГХ,
2006. – 64 с.
3.
Зазуляк, П.М. Основи математичного опрацювання геодезичних
вимірювань [Текст] навчальний посібник / П.М. Зазуляк, В.І. Гавриш, Е.М.
Євсєєва, М.Д. Йосипчук. – Львів: Видавництво «Растр-7», 2007. – 408 с.