Файлы
Заказать работу
Обратная связь
Для правообладателей
Найти
Lalanne C. Mechanical Vibrations and Shocks: Mechanical Shock Volume II
Файлы
Академическая и специальная литература
Механика
Теория колебаний
Назад
Скачать
Подождите немного. Документ загружается.
13
4
Mechanica
l
shoc
k
Locus
of
the
maxima
Th
e
velocit
y
o
f
reboun
d
is
,
i
n
th
e
genera
l
case
,
a
fractio
n
o
f
th
e
velocit
y
o
f
impact
:
Howeve
r
o
r
an
d
x(t
)
i
s
a
t
a
maximu
m
whe
n
v(t
)
=
0
,
i.e
.
whe
n
or
,
sinc
e
i
s
positiv
e
whe
n
0
<
t
<
t
an
d
sinc
e
fo
r
Thu
s
Th
e
locu
s
o
f
maxima
,
give
n
b
y
th
e
parametri
c
representatio
n
t
m
(a)
,
x
m
(a)
,
ca
n
b
e
expresse
d
accordin
g
t
o
a
relatio
n
x
m
(t
m
)
whil
e
eliminatin
g
a
betwee
n
th
e
tw
o
relations
:
Kinematic
s
o
f
simpl
e
shock
s
13
5
Th
e
locu
s
o
f
th
e
maxim
a
i
s
a
n
ar
c
o
f
th
e
curv
e
representativ
e
o
f
thi
s
functio
n
i
n
T
th
e
interva
l
—
<
t
m
<
T
.
2
Tabl
e
5.5
.
Summary
o
f
th
e
conditions
fo
r
th
e
realization
o
f
a
half-sine
shock
Impuls
e
Impac
t
withou
t
reboun
d
Impac
t
wit
h
perfec
t
reboun
d
Impac
t
wit
h
reboun
d
t
o
50
%
o
f
th
e
initia
l
velocit
y
13
6
Mechanica
l
shoc
k
5.3
.
Versed-sin
e
puls
e
5.3.1
.
Definition
Th
e
versed-sine
*
(o
r
haversine*
*
)
shap
e
consist
s
o
f
a
n
ar
c
o
f
sinusoi
d
rangin
g
betwee
n
tw
o
successiv
e
minima
.
Figur
e
5.3
.
Haversine
shock
pulse
I
t
ca
n
b
e
represente
d
b
y
elsewher
e
fo
r
Generalize
d
for
m
Reduce
d
for
m
fo
r
fo
r
elsewher
e
elsewher
e
W
e
se
t
her
e
On
e
minu
s
Cosin
e
On
e
hal
f
o
f
on
e
minu
s
Cosin
e
a
General
expressions
Kinematic
s
o
f
simpl
e
shock
s
13
7
(i
t
i
s
suppose
d
tha
t
x(o
)
=
0)
.
Impuls
e
mod
e
v
Tabl
e
5.6
.
Velocity
an
d
displacement
fo
r
carrying
ou
t
a
versed-sine
shock
pulse
Impac
t
withou
t
reboun
d
Impac
t
wit
h
perfec
t
reboun
d
Impac
t
wit
h
50
%
reboun
d
Velocit
y
Displacemen
t
13
8
Mechanica
l
shoc
k
(b
y
preservin
g
th
e
notatio
n
V
R
=
-
a
vi).
Tabl
e
5.
6
give
s
th
e
expression
s
fo
r
th
e
velocit
y
an
d
th
e
displacemen
t
usin
g
th
e
sam
e
assumption
s
a
s
fo
r
th
e
half-sin
e
pulse
.
Tabl
e
5.7
.
Summary
o
f
th
e
conditions
fo
r
th
e
realization
o
f
a
haversine
shock
pulse
Impuls
e
Impac
t
withou
t
reboun
d
Impac
t
wit
h
perfec
t
reboun
d
Impac
t
wit
h
reboun
d
t
o
50
%
o
f
th
e
initia
l
velocit
y
Kinematic
s
o
f
simpl
e
shock
s
13
9
5.4
.
Rectangula
r
puls
e
5.4.1.
Definition
Generalize
d
for
m
Figur
e
5.4
.
Rectangular
shock
pulse
fo
r
elsewher
e
fo
r
elsewher
e
Reduce
d
for
m
fo
r
elsewher
e
5.4.2
.
Shock
motion
study
General
expressions
14
0
Mechanica
l
shoc
k
Impuls
e
Impac
t
Tabl
e
5.8
.
Velocity
an
d
displacement:
rectangular
shock
pulse
Impac
t
withou
t
reboun
d
Impac
t
wit
h
perfec
t
reboun
d
Impac
t
wit
h
50
%
reboun
d
Velocit
y
Displacemen
t
Kinematic
s
o
f
simpl
e
shock
s
14
1
Tabl
e
5.9
.
Summary
o
f
th
e
conditions
fo
r
th
e
realization
o
f
a
rectangular
shock
pulse
Impuls
e
Impac
t
withou
t
reboun
d
Impac
t
wit
h
perfec
t
reboun
d
Impac
t
wit
h
reboun
d
t
o
50
%
o
f
th
e
initia
l
velocit
y
14
2
Mechanica
l
shoc
k
5.5
.
Termina
l
pea
k
sa
w
toot
h
puls
e
5.5.1
.
Definition
Figur
e
5.5
.
Terminal
peak
sa
w
tooth
pulse
fo
r
elsewher
e
Generalize
d
for
m
fo
r
elsewher
e
Reduce
d
for
m
fo
r
elsewher
e
Kinematic
s
o
f
simpl
e
shock
s
14
3
5.5.2
.
Shock
motion
study
General
expressions
Impuls
e
Impac
t
Tabl
e
5.
1
Impac
t
withou
t
reboun
d
Impac
t
wit
h
perfec
t
reboun
d
Impac
t
wit
h
50
%
reboun
d
10
.
Velocity
an
d
displacement
t
o
carry
ou
t
a
TP
S
shock
pulse
Velocit
y
Displacemen
t
‹
1
2
...
13
14
15
16
17
18
19
...
33
34
›