394 References
[46] M. Furst, J. Saxe, and M. Sipser, Parity, circuits, and the poly-
nomial time hierarchy, Math. Syst. Theory, 17 (1984), pp. 13–27.
[47] K. G
¨
odel, On undecidable propositions of formal mathematical
systems, in The Undecidable,M.Davis,ed.,Hewlitt,NY:Raven
Press, 1965, pp. 5–38.
[48] O. Goldreich, S. Micali, and A. Wigderson, Proofs that yield
nothing but their validity, and a methodology of cryptographic pro-
tocol design, in Proc. 27th Symp. Foundations of Computer Science,
IEEE, October 1986, pp. 174–187.
[49] S. Goldwasser, S. Micali, and C. Rackoff, The knowledge
complexity of interactive proof systems, SIAM J. Comput.,18
(1989), pp. 186–208.
[50] S. Goldwasser and M. Sipser, Private coins vs. public coins in
interactive proof systems, in Proc. 18th Symp. Theory of Computing,
ACM, May 1986, pp. 59–68.
[51] G.H. Hardy and E.M. Wright, An Introduction to the Theory of
Numbers, 5th ed., Oxford, UK: Oxford University, 1979.
[52] D. Harel, Effective transformations on infinite trees, with appli-
cations to high undecidability, dominoes, and fairness, J. Assoc.
Comput. Mach., 33 (1986), pp. 224–248.
[53] D. Harel and D. Kozen, A programming language for the induc-
tive sets, and applications, Inf. Control, 63 (1984), pp. 118–139.
[54] D. Harel, D. Kozen, and J. Tiuryn, Dynamic Logic, Cambridge,
MA: MIT Press, 2000.
[55] J. Hartmanis and R.E. Stearns, On the computational complex-
ity of algorithms, Trans. Amer. Math. Soc., 117 (1965), pp. 285–306.
[56] J. H
˚
astad, Almost optimal lower bounds for small depth circuits,
in Proc. 18th Symp. Theory of Computing, New York: ACM, 1986,
pp. 6–20.
[57]
, Clique is hard to approximate within n
1−ε
, Acta Math., 182
(1999), pp. 105–142.
[58]
, Some optimal inapproximability results, J. Assoc. Comput.
Mach., 48 (2001), pp. 798–859.
[59] F.C. Hennie, One-tape off-line Turing machine computations, Inf.
Control, 8 (1965), pp. 553–578.
[60] F.C. Hennie and R.E. Stearns, Two-tape simulation of multitape
turing machines, J. Assoc. Comput. Mach., 13 (1966), pp. 533–546.
[61] J. Hopcroft, R. Motwani, and J. Ullman, Introduction to Au-
tomata Theory, Languages, and Computation, 2nd ed., Reading,
MA: Addison-Wesley, 2001.
[62] J.E. Hopcroft and R.M. Karp,Ann
5/2
algorithm for maximum
matching in bipartite graphs, SIAM J. Comput., 2 (1973), pp. 225–
231.