16 Bioaerosol Standoff Monitoring Using Intensified 215
Acknowledgements We are grateful to the Biological Standoff Detection Field Demo trial team
and to DPG personnel for their support throughout the trial. Special thanks to John Strawbridge,
JPM Bio Defence, to have given us the opportunity to attend this trial.
References
Bronson R. (1989), Matrix Operations, Schaum’s Outline Series, McGraw-Hill, New York.
Buteau S., Simard J.-R., and Roy G. (2005, October), Standoff detection of natural bioaerosol by
range-gated laser-induced fluorescence spectroscopy. (Paper presented at Optics East SPIE
conference—Chemical and Biological Standoff Detection III, #5995, Boston, USA).
Buteau S., Simard J.R., McFee J., Ho J., Lahaie P., Roy G., and Mathieu P. (2006), Joint Biological
Standoff Detection System Increment II:Field Demonstration—SINBAHD performances.
DRDC Valcartier TM2006-140, 83, UNCLASSIFED.
Chen C.L., Heglund D.L., Ray M.D., Harder D., Dobert R., Leung K.P., Wu M.,and Sedlacek III
A.J. (1997), Application of Resonance Raman Lidar for Chemical Species Identification, SPIE
Vol. 3065, pp. 279–285.
Condatore L.A.Jr., Guthrie R.B., Bradshaw B.J., Logan K.E., Lingvay L.S., Smith T.H.,
Kaffenberger T.S., Jezek B.W., Cannaliato V.J., Ginley W.J., and Hungate W.S. (1998,
October), U.S. Army Chemical and Biological Defense Command Counter-Proliferatioin
Long-Range Biological Standoff Detection System, (paper presented at the 4th Joint Workshop
on Standoff Detection for Chemical and Biological Defense).
Evans B.T.N., Roy G., and Ho J. (1989), The Detection and Mapping of Biological Simulants,
Part 2: Preliminary Lidar Results, DREV R-4480/89, UNCLASSIFIED.
Faris G.W., Copeland R.A., Mortelmans K., and Bronk B.V. (1997), Spectrally resolved absolute
fluorescence cross sections for bacillus spores, Appl. Opt., 36(4), 958–967.
Fell N.F.Jr., Pinnick R.G., Hill S.C., Videen G., Niles S., Chang R.K., Holler S., Pan Y., Bottiger
J.R. and Bronk B.V. (1998, November), Concentration, Size, and Excitation Power Effects on
Fluorescence from Microdroplets and Microparticles Containing Tryptophan and Bacteria,
(paper presented at the Conference on Air Monitoring and Detection of Chemical and
Biological Agents, Boston). SPIE Vol. 3533, pp. 52–63.
Gelbwachs J. and Birnbaum M. (1973), Fluorescence of atmospheric aerosols and lidar implica-
tions, Appl. Opt., 12(10), 2442–2447.
Grant W. B. (1977), Optical Bases for Remote Biological Aerosol Detection, Edgewood Arsenal
Contractor Report No. ED-CR-77025, Standford Research Institute.
Hairston P.P., Ho J.and Quant F.R. (1997), Design of an instrument for real-time detection of
bioaerosols using simultaneous measurement of particle aerodynamic size and intrinsic fluo-
rescence, J. Aerosol Sci., 28(3), 471–482.
Hargis P.J. Jr., Lang A.R., Schmitt R.L., Henson T.D., Daniels J.W., Jordan J.D., Shcroder K.L.
and Shokair I.R. (1998, October), Sandia Multispectral Airborne Lidar for UAV Deployment,
(paper presented at the 4th Joint Workshop on Standoff Detection for Chemical and Biological
Defense).
Ho J., Spence M., and Hairston P. (1999), Measurement of biological aerosol with a fluorescent
aerodynamic particle sizer (FLAPS): Correlation of optical data with biological data,
Aerobiologia, 15, 281–291.
Houston J.D. and Evans B.T.N. (1987), Monitoring Aerosols Optically, Photo. Spec., 93.
Hutt D.L., Bissonnette L.R., and Durand L. (1994), Multiple field of view lidar returns from
atmospheric aerosols, Appl. Opt., 33, 2338–2348.
Measures R.M. (1984), Laser Remote Sensing: Fundamentals and Applications, Wiley Interscience,
New York.
Press W.H., TeukolskyS.A., Vetterling W.T. and Flannery B.P. (1992), Numerical Recipes in C:
The Art of Scientific Computing, Second Edition, Cambridge University Press, Cambridge.