124
§ 59 Применение производной и интеграла
к решению практических задач
№ 1025
v(t) = s′(t), s – первообразная v(t)
1)
()
()
6846413
4
0
3
4
0
2
=+=+=+=
∫
ttdttts ;
2)
()
()
3
1
21
3
2
418
2
1
3
2
2
9
18
23
2
2
3
1
23
3
1
2
=−+=−−+=+=+=
∫
tt
dtttts .
№ 1026
1) v(t) = 0, 4t – t
2
= 0, t = 0, t = 4;
2)
() ()
()
3
2
100
3
64
32
3
24
4
0
3
2
4
0
2
2
1
=−−=−=−==
∫∫
t
tdtttdttvts
t
t
.
№ 1027
1) у = 3х – 2х
2
+ С; 2) у = 2х
3
– 4х
2
+ х + С; 3)
Cey
x
+=
2
2
3
;
4)
CxCxy +=+⋅⋅= 2sin22sin
2
1
4
.
5) у = 3 ⋅ (–cos х) + С = –3cos х + С; 6) у = sin x + cos x + C.
№ 1028
1) у = –cos x + C; –cos 0 + C = 0, C = 1, y = –cos x + 1
2) у = 2sin x + C; 2sin π + C = 1, C = 1, y = 2sin x + 1
3) у = x
3
+ 2x
2
– x + C; 1 + 2 – 1 + C = –2, C = –4; y = x
3
+ 2x
2
– x – 4
4) у = 2x + x
2
– x
3
+ C; –2 + 1 + 1 + C = 2, C = 2; у = 2x + x
2
– x
3
+ 2
5) у = e
x
+ C; e + C = 1, C = 1 – e, y = e
x
+ 1 – e
6) у = –e
–x
+ C; –1 + C = 2 C = 3 y = –e
–x
+ 3.
№ 1029
y′ = –С
1
ωsin ωx + С
2
ωcos ωx; y′′ = –С
1
ω
2
cos ωx – С
2
ω
2
sin ωx;
y′′ + ω
2
у = –С
1
ω
2
cos ωx – С
2
ω
2
sin ωx + ω
2
С
1
cos ωx + ω
2
С
2
sin ωx = 0;
0 = 0 – верно при любых С
1
и С
2
.
№ 1030
Скорость распада m′(t) =
л10
г001,0
=0,0001
m′(t) = k m (t) решение m(t) = m
0
e
–kt
В нашем случае m′(t)=0,0001 и m
0
=1, t=10, m(t) = 0,999, 0,999=1⋅ e
–10k
e
–10k
= 0,999, –10k = ln 0,999,
10
999,0ln
−=k ,
t
e
⋅
⋅=
10
999,0ln
15,0,
5,0ln
10
999,0ln
=⋅ t
,
999,0ln
5,0ln10
=
t , t ≈ 6928.