Bibliography 211
57. B. Helffer and J. Sjostrand. Puits multiples en mécanique semi classique, IV: etude du com-
plexe de Witten. Commun. Partial Differ. Equ., 10:245–340, 1985.
58. Z. Huang. Calculus of variations and the L2-Bergman metric on Teichmüller space.
arXiv:math.DG/0506569, 2006.
59. J. Jorgenson and J. Kramer. Non-completeness of the Arakelov-induced metric on moduli
space of curves. Man. Math., 119:453–463, 2006.
60. J. Jost. Orientable and nonorientable minimal surfaces. Proc. First World Congress of Non-
linear Analysts, Tampa, Florida, 1992:819–826, 1996.
61. J. Jost. Minimal surfaces and Teichmüller theory. In S.T. Yau, editor, Tsing Hua lectures on
geometry and analysis, pages 149–211. International Press, Boston, 1997.
62. J. Jost. Bosonic strings. International Press, Boston, 2001.
63. J. Jost. Partial differential equations, 2nd edn. Springer, Berlin, 2007.
64. J. Jost. Compact Riemann surfaces, 3rd edn. Springer, Berlin, 2006.
65. J. Jost. Riemannian geometry and geometric analysis, 5th edn. Springer, Berlin, 2008.
66. J. Jost and X. Li-Jost. Calculus of variations. Cambridge University Press, Cambridge, 1998.
67. J. Jost and X.W. Peng. Group actions, gauge transformations and the calculus of variations.
Math. Ann., 293:595–621, 1992.
68. J. Jost and M. Struwe. Morse-Conley theory for minimal surfaces of varying topological
type. Inv. Math., 102:465–499, 1990.
69. J. Jost and S.T. Yau. Harmonic maps and algebraic varieties over function fields. Am. J.
Math., 115:1197–1227, 1993.
70. J. Jost and K. Zuo. Harmonic maps of infinite energy and rigidity results for Archimedean
and non-Archimedean representations of fundamental groups of quasiprojective varieties.
J. Differ. Geom., 47:469–503, 1997.
71. J. Jost and K. Zuo. Harmonic maps into Bruhat-Tits buildings and factorizations of p-adically
unbounded representations of π
1
of algebraic varieties, I. J. Algebraic Geom., 9:1–42, 2000.
72. J. Jost and K. Zuo. Representations of fundamental groups of algebraic manifolds and their
restrictions to fibers of a fibration. Math. Res. Lett., 8:569–575, 2001.
73. S.V. Ketov. Quantum non-linear sigma-models. Springer, Berlin, 2000.
74. C. Kiefer. Quantum gravity. Oxford University Press, Oxford, 2007.
75. A. Knapp. Representation theory of semisimple groups, 2nd edn. Princeton University Press,
Princeton, 2001.
76. D. Leites. Introduction to the theory of supermanifolds. Usp. Mat. Nauk, 35:3–57, 1980.
Tanslated in: Russ. Math. Surv., 35:1–64, 1980.
77. D. Lüst and S. Theisen. Lectures on string theory. Lecture notes in physics, volume 346.
Springer, Berlin, 1989.
78. J. Maldacena. The large N limit of superconformal field theories. Adv. Theor. Math. Phys.,
2:231–252, 1998.
79. Y. Manin. Gauge field theory and complex geometry, 2nd edn. Springer, Berlin, 1997.
80. H. Masur. The extension of the Weil-Petersson metric to the boundary of Teichmüller space.
Duke Math. J., 43:623–635, 1977.
81. C. Misner, K. Thorne, and J. Wheeler. Gravitation. Freeman, New York, 1973.
82. L. Modica. The gradient theory of phase transitions and the minimal interface criterion. Arch.
Ration. Mech. Anal., 98:123–142, 1987.
83. D. Mumford. Geometric invariant theory. Springer, Berlin, 1965.
84. D. Mumford. Stability of projective varieties. Enseign. Math., 23:39–110, 1977.
85. R. Penrose. The road to reality. Jonathan Cape, 2004.
86. J. Polchinski. Dirichlet branes and Ramond-Ramond charges. Phys.Rev.Lett., 75:4724–
4727, 1995.
87. J. Polchinski. String theory, volume I. Cambridge University Press, Cambridge, 1998.
88. J. Polchinski. String theory, volume II. Cambridge University Press, Cambridge, 1998.
89. J. Rabin. Super Riemann surfaces. In S.T. Yau, editor, Mathematical aspects of string theory,
pages 368–385. World Scientific, Singapore, 1987.