References 71
the fourth root of the quark determinant (a very complicated quantity that is in large
part the gist of the lattice sea, or dynamical, quark effects), it drastically reduces the
amount of computation needed. No other approach has been able to compete in the
numerical precision reached by staggered fermions, although this is badly needed
to check the systematic error of “rooting.” However, [33] claims that the precision
of (4.18) can stand scrutiny. The authors then go on to claim that this discrepancy
suggests New Physics.
It is not our purpose to comment on the intricacies of lattice QCD computations.
In Sect. 3.1.3, we have in fact used the discrepancy of the above two equations
to argue, in an intuitive way, that B
s
mixing in SM is likely to be larger than the
experimental measurement of (3.13). From that standpoint, we find the claim of [33]
incredulous. The percent level numerical accuracy of a lattice calculation should
be scrutinized thoroughly by the lattice QCD community before such a claim can
be made. Afterall, unlike the experimental situation, (4.18) is so far a stand-alone
result. Furthermore, the New Physics “models” proposed by [33], unlike our general
arguments [23] for H
+
effects, are rather constructed and ad hoc, and not the ones
that one would normally contemplate.
If the tree-dominant and Cabibbo-allowed D
+
s
→
+
ν is the chosen mode to
reveal to us the first signs of New Physics, then, to paraphrase Einstein, “the Lord
would be malicious.”
References
1. Alam, M.S. [CLEO Collaboration]: Phys. Rev. Lett. 74, 2885 (1995) 57, 58, 59
2. Bertolini, S., Borzumati, F., Masiero, A.: Phys. Rev. Lett. 59, 180 (1987) 57, 62
3. Deshpande, N.G., Lo, P., Trampetic, J., Eilam, G., Singer, P.: Phys. Rev. Lett. 59, 183 (1987) 57, 62
4. Grinstein, B., Wise, M.: Phys. Lett. B 201, 274 (1988) 57, 61, 62
5. Hou, W.S., Willey, R.S.: Phys. Lett. B 202, 591 (1988) 57, 61, 62, 63, 64
6. Misiak, M., et al.: Phys. Rev. Lett. 98, 022002 (2007) 57, 60, 62, 63
7. Ammar, R., et al. [CLEO Collaboration]: Phys. Rev. Lett. 71, 674 (1993) 58
8. Aubert, B., et al. [BaBar Collaboration]: Phys. Rev. D 72, 052004 (2005) 59
9. Koppenburg, P., et al. [Belle Collaboration]: Phys. Rev. Lett. 93, 061803 (2004) 59, 60, 61
10. See the webpage of the Heavy Flavor Averaging Group (HFAG). http://www.slac.stanford.
edu/xorg/hfag. We usually, but not always, take the Lepton-Photon 2007 (LP2007) numbers
as reference 60, 62
11. Buras, A.J., Czarnecki, A., Misiak, M., Urban, J.: Nucl. Phys. B 631, 219 (2002) 60
12. Becher, T., Neubert, M.: Phys. Rev. Lett. 98, 022003 (2007) 61
13. Abe, K., et al. [Belle Collaboration]: arXiv:0804.1580 [hep-ex], Belle conference paper
BELLE-CONF-0802 (unpublished) 61
14. Aubert, B., et al. [BaBar Collaboration]: Phys. Rev. D 77, 051103 (2008) 61
15. Hou, W.S., Willey, R.S.: Nucl. Phys. B 326, 54 (1989) 64
16. Grza¸dkowski, B., Hou, W.S.: Phys. Lett. B 272, 383 (1991) 64, 70
17. Coan, T.E., et al. [CLEO Collaboration]: Phys. Rev. Lett. 80, 1150 (1998) 64
18. Hou, W.S.: Nucl. Phys. B 308, 561 (1988) 64
19. Krawczyk, P., Pokorski, S.: Phys. Rev. Lett. 60, 182 (1988) 64
20. Buskulic, D., et al. [ALEPH Collaboration]: Phys. Lett. B 298, 479 (1993) 64
21. Yao, W.M., et al. [Particle Data Group]: J. Phys. G 33, 1 (2006) 64
22. Amsler, C., et al.: Phys. Lett. B 667, 1 (2008); and http://pdg.lbl.gov/ 64