Antti Honkela ICA: Exercise solutions
It remains to show that
˜
x(t) = A
˜
s(t).
˜
x(t) = x(t) − E{x(t)|x(t − 1), x(t − 2), . . . }
= As(t) − E{As(t)|x(t − 1), x(t − 2), . . . }
= A(s(t) − E{s(t)|x(t − 1), x(t − 2), . . . })
= A(s(t) − E{s(t)|s(t − 1), s(t − 2), . . . }) = A
˜
s(t)
(136)
Here we have used the result
E{s(t)|x(t − 1), x(t − 2), . . . } = E{s(t)|s(t − 1), s(t − 2), . . . }. (137)
The intuitive justification for this is that as x = As and A is invertible, both s and x contain the
same information and thus the conditional expectations must be equal.
Formally this follows from
p(x(t − 1)) =
1
|det(A)|
p(s(t − 1)) (138)
p(s(t), x(t − 1)) =
1
|det(A)|
p(s(t), s(t − 1)) (139)
and thus
p(s(t)|s(t − 1)) =
p(s(t), s(t − 1))
p(s(t − 1))
=
p(s(t), x(t − 1))
p(x(t − 1))
= p(s(t)|x(t − 1)). (140)
¤
HUT, Neural Networks Research Centre 21