January 24, 2004 11:49 Elsevier/AID aid
528 index
Topographic waves, 201–204
Rossby, 217–219
Total derivative, 29–32
Total potential energy, 242–245
Tracers
chemical, 442–443
dynamical, 440–442
long-lived, 442–442
Trajectories, 68–70
Transformed Eulerian mean (TEM), 325–327,
415–419
Transport process, in stratosphere, 443–445
Transverse oscillations, 189
Trapezoidal implicit scheme, 458–459
Triangular truncation, 473
Tropical circulation
African wave disturbances, 377–379
condensation heating, 391–394
El Ni˜no and southern oscillation, 383–385
equatorial intraseasonal oscillation, 385–386
equatorial wave disturbances, 374–377
equatorial wave theory, 394–400
intertropical convergence zone, 371–374
monsoons, 313, 380–382
Walker circulation, 382–383
Tropical cyclones, 304–309
Tropical motion
scale analysis of, 387–391
steady forced equatorial, 400–403
Tropopause, 142
Troposphere, 140, 407
Truncation
error, 460–461
rhomboidal, 473
triangular, 473
Turbulence, atmospheric, 116–119
Turbulent kinetic energy, 120–122
Two-layer model
energy equations for, 245–250
normal mode baroclinic instability, 230–242
Typhoons, 304–309
V
Vacillation cycles, 356
Vapor pressure, 502
Vector analysis, 498–500
Vectors, singular, 484
Velocity
absolute, 33
dispersion and group, 186–188
friction, 129
Rossby critical, 422
Vertical coordinates
generalized, 23–24
isentropic, 109–110
isobaric, 23
log-pressure, 252
sigma, 331–332
pressure as, 21–23
Vertical coupling through potential vorticity,
162–164
Vertical motion, 75–77
ageostrophic circulation, 172–174
baroclinic waves and, 238–242
omega equation, 164–168
Q vector, 168–172
Vertically propagating waves, 421–424, 431–433
Viscosity, eddy, 125
Viscosity coefficient
dynamic, 8
kinematic, 10
Viscous force, 8–10
Von Karman’s constant, 130
Vorticity
See also under type of
absolute, 91, 92
barotropic fluids and, 106–108
curvature, 94
defined, 91
natural coordinates and, 93–94
planetary, 92, 160
potential, 95–100
relative, 91, 92, 160
shear, 94
stretching, 156, 160
Vorticity equation, 100
baroclinic (Ertel) potential, 108–111
barotropic, 108, 462–466
barotropic (Rossby) potential, 107
Cartesian coordinate form, 101–102
isentropic, 110–111
isobaric coordinates and, 103
motion equations in isentropic coordinates, 109
potential, 110
quasi-geostrophic, 151–155
quasi-geostrophic potential, 159–161
scale analysis of, 103–106
zonal mean potential, 327–329