10.9 SYMMETRIC STRUCTURES 429
10
Although the details for applying the force method of analysis using
computer methods will also be omitted here, we can make some general
observations and comments that apply when using this method to solve
problems that are highly indeterminate and thus involve large sets of
equations. In this regard, numerical accuracy for the solution is improved
if the flexibility coefficients located near the main diagonal of the f matrix
are larger than those located off the diagonal. To achieve this, some
thought should be given to selection of the primary structure. To facilitate
computations of it is also desirable to choose the primary structure so
that it is somewhat symmetric. This will tend to yield some flexibility
coefficients that are similar or may be zero. Lastly, the deflected shape of
the primary structure should be similar to that of the actual structure. If
this occurs, then the redundants will induce only small corrections to the
primary structure, which results in a more accurate solution of Eq. 10–2.
10.9 Symmetric Structures
A structural analysis of any highly indeterminate structure, or for that
matter, even a statically determinate structure, can be simplified provided
the designer or analyst can recognize those structures that are symmetric
and support either symmetric or antisymmetric loadings. In a general
sense, a structure can be classified as being symmetric provided half of it
develops the same internal loadings and deflections as its mirror image
reflected about its central axis. Normally symmetry requires the material
composition, geometry, supports, and loading to be the same on each side
of the structure. However, this does not always have to be the case. Notice
that for horizontal stability a pin is required to support the beam and
truss in Figs. 10–17a and 10–17b. Here the horizontal reaction at the pin is
zero, and so both of these structures will deflect and produce the same
internal loading as their reflected counterpart. As a result, they can be
classified as being symmetric. Realize that this would not be the case for
the frame, Figs. 10–17c, if the fixed support at A was replaced by a pin,
since then the deflected shape and internal loadings would not be the
same on its left and right sides.
f
ij
,
(b)
w
axis of symmetry
P
2
P
1
(a)
axis of symmetry
Fig. 10–17