CONTINUED No. 155 R32
Generators selected (1); t(1, 0,0); t(0,1,0); t(0,0,1); (2); (4)
Positions
Multiplicity,
Wyckoff letter,
Site symmetry
Coordinates Reflection conditions
General:
6 f 1(1)x,y,z (2) z,x,y (3) y,z,x
(4) ¯z, ¯y, ¯x (5) ¯y, ¯x, ¯z (6) ¯x, ¯z, ¯y
no conditions
Special: no extra conditions
3 e . 2
1
2
,y, ¯y ¯y,
1
2
,yy, ¯y,
1
2
3 d . 20, y, ¯y ¯y,0,yy, ¯y,0
2 c 3 . x,x, x ¯x, ¯x, ¯x
1 b 32
1
2
,
1
2
,
1
2
1 a 32 0, 0,0
Symmetry of special projections
Along [111] p3m1
a
=
1
3
(2a − b− c) b
=
1
3
(−a + 2b − c)
Origin at x,x, x
Along [1
¯
10] p2
a
=
1
2
(a + b − 2c ) b
= c
Origin at x, ¯x,0
Along [2
¯
1
¯
1] p11m
a
=
1
2
(b− c) b
=
1
3
(a + b + c)
Origin at 2x, ¯x, ¯x
Maximal non-isomorphic subgroups
I
[2] R31 (R3, 146) 1; 2; 3
[3] R12 (C2, 5) 1; 4
[3] R12 (C2, 5) 1; 5
[3] R12 (C2, 5) 1; 6
IIa none
IIb [3] P321 (a
= a − b,b
= b − c,c
= a + b + c) (150); [3] P3
1
21(a
= a − b,b
= b − c,c
= a + b + c) (152);
[3] P3
2
21(a
= a − b,b
= b − c,c
= a + b + c) (154)
Maximal isomorphic subgroups of lowest index
IIc
[2] R32 (a
= b + c,b
= a + c,c
= a + b) (155); [4] R32(a
= −a + b + c,b
= a − b + c,c
= a + b − c) (155)
Minimal non-isomorphic supergroups
I
[2] R
¯
3m (166); [2] R
¯
3c (167); [4] P432 (207); [4] P4
2
32 (208); [4] F 432 (209); [4] F 4
1
32 (210); [4] I 432 (211);
[4] P4
3
32 (212); [4] P4
1
32 (213); [4] I 4
1
32 (214)
II [3] P312(a
=
1
3
(2a − b− c), b
=
1
3
(−a + 2b − c),c
=
1
3
(a + b + c)) (149)
519