the P cell, origin O, by the linear transformation
a
0
a b, b
0
a b, c
0
c
and the shift
p
1
4
a
1
4
b:
The matrices P, p and P are thus given by
P
1
10
110
001
0
@
1
A
, p
1
4
1
4
0
0
@
1
A
, P
1
10
1
4
110
1
4
0010
0001
0
B
B
@
1
C
C
A
:
From Fig. 5.2.3.1, we derive also the inverse transformation
a
1
2
a
0
1
2
b
0
, b
1
2
a
0
1
2
b
0
, c c
0
, q
1
4
a
0
:
Thus, the matrices Q, q and Q are
Q P
1
1
2
1
2
0
1
2
1
2
0
001
0
B
@
1
C
A
, q P
1
p
1
4
0
0
0
B
@
1
C
A
,
Q P
1
1
2
1
2
0
1
4
1
2
1
2
00
0010
0001
0
B
B
B
B
@
1
C
C
C
C
A
:
The coordinates x, y, z of points in the P cell are transformed by Q:
x
0
y
0
z
0
1
0
B
B
B
B
@
1
C
C
C
C
A
=
1
2
1
2
0
1
4
1
2
1
2
00
0010
0001
0
B
B
B
B
@
1
C
C
C
C
A
x
y
z
1
0
B
B
B
B
@
1
C
C
C
C
A
=
1
2
x y
1
4
1
2
x y
z
1
0
B
B
B
B
@
1
C
C
C
C
A
:
The coordinate triplets of the four silicon positions in the P cell
are 0.300, 0.300, 0; 0.700, 0.700,
1
2
; 0.200, 0.800,
1
4
; 0.800, 0.200,
3
4
.
Four triplets in the C cell are obtained by inserting these values into
the equation just derived. The new coordinates are 0.050, 0, 0;
0.450, 0,
1
2
; 0.250, 0.300,
1
4
; 0.250, 0.300,
3
4
. A set of four further
points is obtained by adding the centring translation
1
2
,
1
2
, 0 to these
coordinates.
The indices h, k, l are transformed by the matrix P :
h
0
, k
0
, l
0
h, k, l
1
10
110
001
0
@
1
A
h k, h k, l,
i.e. the reflections with the indices h, k, l of the P cell become
reflections h k, h k, l of the C cell.
The symmetry operations of space group P4
1
2
1
2 are listed in the
space-group tables for the P cell as follows:
1 x, y, z; 2
x,
y,
1
2
z;
3
1
2
y,
1
2
x,
1
4
z; 4
1
2
y,
1
2
x,
3
4
z;
5
1
2
x,
1
2
y,
1
4
z; 6
1
2
x,
1
2
y,
3
4
z;
7 y, x,z; 8
y,
x,
1
2
z:
The corresponding matrices W are
1
1000
0100
0010
0001
0
B
B
B
@
1
C
C
C
A
; 2
1000
0
100
001
1
2
0001
0
B
B
B
@
1
C
C
C
A
; 3
0
10
1
2
100
1
2
001
1
4
0001
0
B
B
B
@
1
C
C
C
A
;
4
010
1
2
100
1
2
001
3
4
0001
0
B
B
B
@
1
C
C
C
A
; 5
100
1
2
010
1
2
00
1
1
4
0001
0
B
B
B
@
1
C
C
C
A
; 6
100
1
2
0
10
1
2
00
1
3
4
0001
0
B
B
B
@
1
C
C
C
A
;
7
0100
1000
00
10
0001
0
B
B
B
@
1
C
C
C
A
; 8
0
100
1000
00
1
1
2
0001
0
B
B
B
@
1
C
C
C
A
:
These matrices of the P cell are transformed to the matrices W
0
of
the C cell by
W
0
QWP:
For matrix (2), for example, this results in
W
0
1
2
1
2
0
1
4
1
2
1
2
00
0010
0001
0
B
B
B
B
@
1
C
C
C
C
A
1000
0
100
001
1
2
0001
0
B
B
B
@
1
C
C
C
A
1
10
1
4
110
1
4
0010
0001
0
B
B
B
@
1
C
C
C
A
100
1
2
0
100
001
1
2
0001
0
B
B
B
@
1
C
C
C
A
:
The eight transformed matrices W
0
, derived in this way, are
Fig. 5.2.3.1. Positions of silicon atoms in the low-cristobalite structure,
projected along 00
1. Primitive tetragonal cell a, b, c; C-centred
tetragonal cell a
0
, b
0
, c
0
. Shift of origin from O to O
0
by the vector
p
1
4
a
1
4
b.
88
5. TRANSFORMATIONS IN CRYSTALLOGRAPHY