378 References
Born, M. (1926). Zur Quantenmechanik der Stoßvorg
¨
ange. Z. Phys. 37, 863. An English
translation is in WZ, p. 52.
Born, M. and E. Wolf (1980). Principles of Optics, 6th edition (Pergamon Press, Oxford).
Bransden, B. H. and C. J. Joachain (1989).Introduction to Quantum Mechanics (Longman,
London).
Brun, T. A. (1993). Quasiclassical equations of motion for nonlinear Brownian systems.
Phys. Rev. D 47, 3383.
Brun, T. A. (1994). Applications of the Decoherence Formalism, PhD dissertation, Cali-
fornia Institute of Technology.
Clauser, J. F., M. A. Horne, A. Shimony, and R. A. Holt (1969). Proposed experiment to
test local hidden-variable theories. Phys. Rev. Lett. 23, 880.
Cohen-Tannoudji, C., B. Diu, and F. Lalo
¨
e (1977). Quantum Mechanics (Hermann, Paris).
DeGroot, M. H. (1986). Probability and Statistics, 2d edition (Addison-Wesley, Reading,
Massachusetts).
d’Espagnat, B. (1984). Nonseparability and the tentative descriptions of reality. Phys.
Repts. 110, 201.
d’Espagnat, B. (1989). Reality and the Physicist (Cambridge University Press, Cambridge,
UK).
Dicke, R. H. (1981). Interaction-free quantum measurements: a paradox? Am. J. Phys. 49,
925.
Dirac, P. A. M. (1958). The Principles of Quantum Mechanics, 4th edition (Oxford Uni-
versity Press, Oxford).
Dowker, F. and A. Kent (1996). On the consistent histories approach to quantum mechan-
ics. J. Stat. Phys. 82, 1575.
Einstein, A., B. Podolsky, and N. Rosen (1935). Can quantum-mechanical description of
physical reality be considered complete? Phys. Rev. 47, 777.
Elitzur, A. C. and L. Vaidman (1993). Quantum mechanical interaction-free measurements.
Found. Phys. 23, 987.
Englert, B. G., M. O. Scully, G. Sussmann, and H. Walther (1992). Surrealistic Bohm
trajectories. Z. Naturforsch. 47a, 1175.
Feller, W. (1968). An Introduction to Probability Theory and Its Applications, Vol. 1, 3rd
edition (John Wiley & Sons, New York).
Fetter, A. L. and J. D. Walecka (1971). Quantum Theory of Many-Particle Systems
(McGraw-Hill, New York).
Feynman, R. P., R. B. Leighton, and M. Sands (1965). The Feynman Lectures on Physics,
Vol. III (Addison-Wesley, Reading, Massachusetts).
Fine, A. (1986). The Shaky Game: Einstein Realism and the Quantum Theory (University
of Chicago Press, Chicago). A similar perspective will be found in the 2nd edition
(1996).
Gell-Mann, M. and J. B. Hartle (1990). Quantum mechanics in the light of quantum cos-
mology, in Complexity, Entropy, and the Physics of Information, ed. W. Zurek (Addi-
son Wesley, Reading, Massachusetts), p. 425; also in Proceedings of the 25th Inter-
national Conference on High Energy Physics, Singapore, 1990, eds. K. K. Phua and
Y. Yamaguchi (World Scientific, Singapore).
Gell-Mann, M. and J. B. Hartle (1993). Classical equations for quantum systems. Phys.
Rev. D 47, 3345.
Gieres, F. (2000). Mathematical surprises and Dirac’s formalism in quantum mechanics.
Rep. Prog. Phys. 63, 1893.
Giulini, D., E. Joos, C. Kiefer, J. Kupsch, I.-O. Stamatescu, and H. D. Zeh (1996). De-
coherence and the Appearance of a Classical World in Quantum Theory (Springer,