K I N E M A T I C S : T H E G E O M E T R Y O F M O T I O N 40
x = rcosφ and y = rsinφ, (2.21 a,b)
or
x = f(r, φ) and y = g(r, φ).
The differentials are
dx = (∂f/∂r)dr + (∂f/∂φ)dφ and dy = (∂g/∂r)dr + (∂g/∂φ)dφ.
We are interested in the transformation of the components of the velocity vector under
[x, y] → [r, φ]. The velocity components involve the rates of change of dx and dy with
respect to time:
dx/dt = (∂f/∂r)dr/dt + (∂f/∂φ)dφ/dt and dy/dt = (∂g/∂r)dr/dt + (∂g/∂φ)dφ/dt
or
•
•
•
•
•
•
x = (∂f/∂r)r + (∂f/∂φ)φ and y = (∂g/∂r)r + (∂g/∂φ)φ. (2.22)
But,
∂f/∂r = cosφ, ∂f/∂φ = –rsinφ, ∂g/∂r = sinφ, and ∂g/∂φ = rcosφ,
therefore, the velocity transformations are
•
•
•
x = cosφ r – sinφ(r φ) = v
x
(2.23)
and
•
•
•
y = sinφ r + cosφ(r φ) = v
y
. (2.24)
These equations can be written
v
x
cosφ –sinφ dr/dt
= .
v
y
sinφ cosφ rdφ/dt
Changing φ → –φ, gives the inverse equations