281
Reverse Engineering Gene Regulatory Networks
Reinders, M. J. T. (2006) Least absolute
regression network analysis of the murine oster-
blast differentiation network. Bioinformatics,
22, 477–484.
16 Grandvalet, Y. and Canu, S. (1998) Outcomes
of the equivalence of adaptive ridge with least
absolute shrinkage. In Kearns, M., Solla, S.A.
and Cohn, D.A. (eds.), Advances in Neural
Information Processing Systems 11, pp. 445–
451. MIT Press, Cambridge
17 MacKay, D. J. C. (1996) Hyperparameters:
optimize, or integrate out. In Heidbreder, G.
(ed.), Maximum Entropy and Bayesian Methods,
pp. 43–59. Kluwer Academic Publisher, Santa
Barbara.
18 MacKay, D. J. C. (1992) Bayesian interpola-
tion. Neural Computation, 4, 415–447.
19 Rogers, S. and Girolami, M. (2005) A
Bayesian regression approach to the inference
of regulatory networks from gene expression
data. Bioinformatics, 21, 3131–3137.
20 Tipping, M. and Faul, A. (2003) Fast mar-
ginal likelihood maximisation for sparse
Bayesian models. In M., B. C. and J., F. B.
(eds.), Proceedings of the International
Workshop on Artificial Intelligence and
Statistics, volume 9.
21 Friedman, N., Linial, M., Nachman, I. and
Pe’er, D. (2000) Using Bayesian networks to
analyze expression data. Journal of
Computational Biology, 7, 601–620.
22 Hartemink, A. J., Gifford, D. K., Jaakkola, T.
S. and Young, R. A. (2001) Using graphical
models and genomic expression data to statis-
tically validate models of genetic regulatory
networks. Pacific Symposium on Biocomputing,
6, 422–433.
23 Husmeier, D., Dybowski, R. and Roberts, S.
(2005) Probabilistic Modeling in
Bioinformatics and Medical Informatics.
Advanced Information and Knowledge
Processing. Springer, New York.
24 Heckerman, D. (1999) A tutorial on learning
with Bayesian networks. In Jordan, M. I.
(ed.), Learning in Graphical Models, Adaptive
Computation and Machine Learning, pp.
301–354. MIT Press, Cambridge,
Massachusetts.
25 Grzegorczyk, M., Husmeier, D. and Werhli,
A. (2008) Reverse engineering gene regula-
tory networks with various machine learning
methods. In Emmert-Streib, F. and Dehmer,
M. (eds.), Analysis of Microarray Data: A
Network-Based Approach, pp. 101–142. Wiley-
VCH, Weinheim.
26 Geiger, D. and Heckerman, D. (1994)
Learning Gaussian networks. In Proceedings of
the Tenth Conference on Uncertainty in
Artificial Intelligence, pp. 235–243. Morgan
Kaufmann, San Francisco, CA.
27 Madigan, D. and York, J. (1995) Bayesian
graphical models for discrete data.
International Statistical Review, 63,
215–232.
28 Friedman, N. and Koller, D. (2003) Being
Bayesian about network structure. Machine
Learning, 50, 95–126.
29 Grzegorczyk, M. and Husmeier, D. (2008)
Improving the structure MCMC sampler for
Bayesian networks by introducing a new edge
reversal move. Machine Learning, 71,
265–305.
30 Markowetz, F., Bloch, J. and Spang, R. (2005)
Non-transcriptional pathway features recon-
structed from secondary effects of RNA inter-
ference. Bioinformatics, 21, 4026–4032.
31 Fröhlich, H., Fellmann, M., Sultmann, H.,
Poustka, A. and Beissbarth, T. (2008)
Estimating large scale signaling networks
through nested effect models with interven-
tion effects from microarray data.
Bioinformatics, 24, 2650–2656.
32 Markowetz, F., Kostka, D., Troyanskaya, O.
and Spang, R. (2007) Nested effects models
for highdimensional phenotyping screens.
Bioinformatics, 23, i305–i312.
33 Fröhlich, H., Tresch, A. and Beissbarth, T.
(2009) Nested effects models for learning sig-
naling networks from perturbation data.
Biometrical Journal, 51, 304–323.
34 Margaritis, D. (2003) Learning Bayesian net-
work model structure from data. Ph.D. thesis,
School of Computer Science, Carnegie-
Mellon University.
35 Bishop, C. M. (1995) Neural Networks for
Pattern Recognition. Oxford University Press,
New York, ISBN 0-19-853864-2.
36 Guelzim, N., Bottani, S., Bourgine, P. and
Kepes, F. (2002) Topological and causal
structure of the yeast transcriptional regula-
tory network. Nature Genetics, 31, 60–63.
37 Battiti, R. and Colla, A. M. (1994) Democracy
in neural nets: voting schemes for classifica-
tion. Neural Networks, 7, 691–707.