238 DeGrasse and Devos
References
1. Rout MP, Aitchison JD, Suprapto A, Hjertaas
K, Zhao YM, Chait BT. (2000) The yeast
nuclear pore complex: Composition, architec-
ture, and transport mechanism. The Journal
of Cell Biology; 148:635–51.
2. Cronshaw JA, Krutchinsky AN, Zhang WZ,
Chait BT, Matunis MJ. (2002) Proteomic
analysis of the mammalian nuclear pore com-
plex. The Journal of Cell Biology;
158:915–27.
3. Berriman M, Ghedin E, Hertz-Fowler C,
et al. (2005) The genome of the African try-
panosome Trypanosoma brucei. Science;
309:416–22.
4. Atwood JA, Weatherly DB, Minning TA, et al.
(2005) The Trypanosoma cruzi proteome.
Science; 309:473–6.
5. McHugh L, Arthur JW. (2008) Computational
methods for protein identification from mass
spectrometry data. PLoS Computational
Biology; 4:e12.
6. Altschul SF, Madden TL, Schaffer AA, et al.
(1997) Gapped BLAST and PSI-BLAST: a
new generation of protein database search
programs. Nucleic Acids Research;
25:3389–402.
7. Pearson WR, Lipman DJ. (1988) Improved
tools for biological sequence comparison.
Proceedings of the National Academy of
Sciences of the United States of America;
85:2444–8.
8. Eddy SR. (1998) Profile hidden Markov mod-
els. Bioinformatics; 14:755–63.
9. Kall L, Krogh A, Sonnhammer ELL. (2004)
A combined transmembrane topology and
signal peptide prediction method. Journal of
Molecular Biology; 338:1027–36.
10. Ward JJ, Sodhi JS, McGuffin LJ, Buxton BF,
Jones DT. (2004) Prediction and functional
analysis of native disorder in proteins from the
three kingdoms of life. Journal of Molecular
Biology; 337:635–45.
11. Lupas A, Vandyke M, Stock J. (1991)
Predicting coiled coils from protein sequences.
Science; 252:1162–4.
12. Hawkins J, Davis L, Boden M. (2007)
Predicting nuclear localization. Journal of
Proteome Research; 6:1402–9.
13. McGuffin LJ, Bryson K, Jones DT. (2000)
The PSIPRED protein structure prediction
server. Bioinformatics; 16:404–5.
14. Soding J, Biegert A, Lupas AN. (2005) The
HHpred interactive server for protein homol-
ogy detection and structure prediction.
Nucleic Acids Research; 33:W244–8.
15. Larkin MA, Blackshields G, Brown NP, et al.
(2007) Clustal W and Clustal X version 2.0.
Bioinformatics; 23:2947–8.
16. Rout MP, Field MC. (2001) Isolation and char-
acterization of subnuclear compartments from
Trypanosoma brucei – Identification of a major
repetitive nuclear lamina component. Journal
of Biological Chemistry; 276:38261–71.
17. DeGrasse JA, Chait BT, Field MC, Rout MP.
High-yield isolation and subcellular proteomic
characterization of nuclear and subnuclear
structures from trypanosomes. In: Hancock
R, ed. Methods in Molecular Biology: The
Nucleus. New York: Humana Press;
2008:77–92.
18. Bateman A, Birney E, Durbin R, Eddy SR,
Howe KL, Sonnhammer ELL. (2000) The
Pfam protein families database. Nucleic Acids
Research; 28:263–6.
19. Finn RD, Tate J, Mistry J, et al. (2008) The
Pfam protein families database. Nucleic Acids
Research; 36:D281–8.
20. Fenyö D, Zhang W, Beavis RC, Chait BT.
(1996) Internet-based analytical chemistry
resources – a model project. Analytical
Chemistry; 68:A721–6.
21. Devos D, Dokudovskaya S, Williams R, et al.
(2006) Simple fold composition and modular
architecture of the nuclear pore complex.
Proceedings of the National Academy of Sciences
of the United States of America; 103:2172–7.
22. Devos D, Dokudovskaya S, Alber F, et al.
(2004) Components of coated vesicles and
nuclear pore complexes share a common
molecular architecture. PLoS Biology; 2:e380.
23. DeGrasse JA, DuBois KN, Devos D, Siegel TN,
Sali A, Field MC, Rout MP, Chait BT. (2010)
Evidence for a Shared Nuclear Pore Complex
Architecture That Is Conserved from the Last
Common Eukaryotic Ancestor. Molecular &
Cellular Proteomics; 8:2119–30.