90 Fiser
39. Moretti, S., Armougom, F., Wallace, I.M.,
Higgins, D.G., Jongeneel, C.V., and
Notredame, C. (2007) The M-Coffee web
server: a meta-method for computing multi-
ple sequence alignments by combining alter-
native alignment methods. Nucleic Acids Res,
35, W645–W648.
40. Pei, J., Kim, B.H., and Grishin, N.V. (2008)
PROMALS3D: a tool for multiple protein
sequence and structure alignments. Nucleic
Acids Res, 36, 2295–2300.
41. Pei, J. and Grishin, N.V. (2007) PROMALS:
towards accurate multiple sequence align-
ments of distantly related proteins.
Bioinformatics, 23, 802–808.
42. Do, C.B., Mahabhashyam, M.S., Brudno,
M., and Batzoglou, S. (2005) ProbCons:
probabilistic consistency-based multiple
sequence alignment. Genome Res, 15, 330.
43. Jones, D.T. (1999) GenTHREADER: an
efficient and reliable protein fold recognition
method for genomic sequences. J Mol Biol,
287, 797.
44. Finkelstein, A.V. and Reva, B.A. (1991) A
search for the most stable folds of protein
chains. Nature, 351, 497.
45. Bowie, J.U., Luthy, R., and Eisenberg, D.
(1991) A method to identify protein
sequences that fold into a known three-
dimensional structure. Science, 253, 164.
46. Sippl, M.J. (1995) Knowledge-based poten-
tials for proteins. Curr Opin Struct Biol,
5, 229.
47. Shi, J., Blundell, T.L., and Mizuguchi, K.
(2001) FUGUE: sequence–structure homol-
ogy recognition using environment-specific
substitution tables and structure-dependent
gap penalties. J Mol Biol, 310, 243.
48. Felsenstein, J. (1981) Evolutionary trees
from DNA sequences: a maximum likelihood
approach. J Mol Evol, 17, 368.
49. Venclovas, C. and Margelevicius, M. (2005)
Comparative modeling in CASP6 using con-
sensus approach to template selection,
sequence–structure alignment, and structure
assessment. Proteins, 61, 99–105.
50. Sanchez, R. and Sali, A. (1997) Evaluation of
comparative protein structure modeling by
MODELLER-3. Proteins, 1 Suppl, 50.
51. Eisenberg, D., Luthy, R., and Bowie, J.U.
(1997) VERIFY3D: assessment of protein
models with three-dimensional profiles.
Methods Enzymol, 277, 396.
52. Wu, G., McArthur, A.G., Fiser, A., Sali, A.,
Sogin, M.L., and Mllerm, M. (2000) Core
histones of the amitochondriate protist,
Giardia lamblia. Mol Biol Evol, 17, 1156.
53. Jennings, A.J., Edge, C.M., and Sternberg,
M.J. (2001) An approach to improving mul-
tiple alignments of protein sequences using
predicted secondary structure. Protein Eng,
14, 227.
54. Blake, J.D. and Cohen, F.E. (2001) Pairwise
sequence alignment below the twilight zone.
J Mol Biol, 307, 721.
55. Petrey, D., Xiang, Z., Tang, C.L., Xie, L.,
Gimpelev, M., Mitros, T., Soto, C.S.,
Goldsmith-Fischman, S., Kernytsky, A.,
Schlessinger, A., et al. (2003) Using multiple
structure alignments, fast model building,
and energetic analysis in fold recognition and
homology modeling. Proteins, 53 Suppl 6,
430.
56. Al Lazikani, B., Sheinerman, F.B., and
Honig, B. (2001) Combining multiple struc-
ture and sequence alignments to improve
sequence detection and alignment: applica-
tion to the SH2 domains of Janus kinases.
Proc Natl Acad Sci U S A, 98, 14796.
57. Reddy, B.V., Li, W.W., Shindyalov, I.N., and
Bourne, P.E. (2001) Conserved key amino
acid positions (CKAAPs) derived from the
analysis of common substructures in pro-
teins. Proteins, 42, 148.
58. Jaroszewski, L., Rychlewski, L., and Godzik,
A. (2000) Improving the quality of twilight-
zone alignments. Protein Sci, 9, 1487.
59. Rai, B.K. and Fiser, A. (2006) Multiple map-
ping method: a novel approach to the
sequence-to-structure alignment problem in
comparative protein structure modeling.
Proteins, 63, 644–661.
60. Henikoff, S. and Henikoff, J.G. (1992)
Amino acid substitution matrices from pro-
tein blocks. Proc Natl Acad Sci U S A, 89,
10915–10919.
61. Luthy, R., McLachlan, A.D., and Eisenberg,
D. (1991) Secondary structure-based pro-
files: use of structure-conserving scoring
tables in searching protein sequence data-
bases for structural similarities. Proteins, 10,
229–239.
62. Rykunov, D. and Fiser, A. (2007) Effects of
amino acid composition, finite size of pro-
teins, and sparse statistics on distance-depen-
dent statistical pair potentials. Proteins, 67,
559–568.
63. Blundell, T.L., Sibanda, B.L., Sternberg,
M.J., and Thornton, J.M. (1987) Knowledge-
based prediction of protein structures and
the design of novel molecules. Nature,
326, 347.
64. Browne, W.J., North, A.C.T., Phillips, D.C.,
Brew, K., Vanaman, T.C., and Hill, R.C.