15
Note: CdCl
2
also exists as a hexagonal lattice, analogous to CdI
2
.
16
This is the first of five rules that govern the geometric stability of ionic packing, as proposed by Nobel
Laureate Linus Pauling (J. Am. Chem. Soc. 1929, 51, 1010). For more details, see: http://positron.
physik.uni-halle.de/talks/CERAMIC1.pdf
17
(a) Honle, W. J. Solid State Chem. 1983, 49, 157. (b) Perrin, et al. Acta Crystallogr. 1983, C39, 415.
18
For a recent discovery of a safer cathode alternative, LiFeO
4
, see: Kang, B.; Ceder, G. Nature 2009,
458, 190. Information regarding a proposed intercalation mechanism for LiFeO
4
may be found in:
Delmas, C.; Maccario, M.; Croguennec, L.; Le Cras, F.; Weill, F. Nature Materials 2008, 7, 665. For a
recent method to study the thermal stability of a variety of oxide cathode materials for Li-ion battery
applications, see: Wang, L.; Maxisch, T.; Ceder, G. Chem. Mater. 2007, 19, 543.
19
Qi-Hui, W. Chinese Phys. Lett. 2006, 23, 2202.
20
For example, see: Ferracin, L. C. et al. Solid State Ionics 2002, 130, 215.
21
Willard, M. A.; Nakamura, Y.; Laughlin, D. E.; McHenry, M. E. J. Am. Ceram. Soc. 1999, 82, 3342.
22
Nakamura, Y.; Smith, P. A.; Laughlin, D. E.; De Graef, M.; McHenry, M. E. IEEE Trans. Magn. 1995,
31, 4154.
23
http://www.me.psu.edu/sommer/me445/ntcnotes.pdf
24
(a) Jansen, M.; Letschert, H. P.Nature 2002, 404, 980. (b) Kasahara,A.; Nukumizu, K.; Hitoki, G.; Takata,
T.; Kondo, J. N.; Hara, M.;Kobayashi, H.; Domen, K. J. Phys. Chem. A 2002, 106, 6750. (c) Hitoki, G.;
Takata, T.; Kondo, J. N.; Hara, M.; Kobayashi, H.; Domen, K. Chem. Commun. 2002,1698.
25
Pena, M. A.; Fierro, J. L. G. Chem. Rev. 2001, 101, 1981.
26
(a) Honle, W. J. Solid State Chem. 1983, 49, 157. (b) Perrin, et al. Acta Crystallogr. 1983, C39, 415.
27
A nice updated website for past/recent superconductor discoveries is found at http://superconductors.
org/type2.htm
28
For example, see: (a) Emery, V. J.; Kivelson, S. A.; Tranquada, J. M. Proc. Natl. Acad. Sci. 1999, 96,
8814. (b) J. M. Tranquada, H. Woo, T. G. Perring, H. Goka, G. D. Gu, G. Xu, M. Fujita and K. Yamada
Nature 2004, 429, 534. (c) Lee, K. H.; Hoffmann, R. J. Phys. Chem. A 2006, 110, 609. (d) http://www.
nature.com/nature/journal/v440/n7088/edsumm/e060427-09.html
29
For instance, see: (a) Lanzara, A.; Bogdanov, P. V.; Zhou, X. J.; Kellar, S. A.; Feng, D. L.; Lu, E. D.;
Yoshida, T.; Eisaki, H.; Fujimori, A.; Kishio, K.; Shimoyama, J. -I.; Noda, T.; Uchida, S.; Hussain, Z.;
Shen, Z. -X. Nature 2001, 412, 510. (b) Shchetkin, I. S.; Osmanov, T. S. Powder Metall. Metal Ceram.
1993, 32, 1068. (c) Abd-Shukor, R. Solid State Commun. 2007, 142, 587.
30
One model used to explain superconductivity in YBCO is the reduction of unstable Cu
3þ
sites by
redox reactions initiated by electrons passing through the solid in adjacent planes. As an electron
passes by a Cu
3þ
ion, it causes an electron to be injected from a neighboring Cu
2þ
ion resulting in a
lattice distortion, & hole propagation in the opposite direction. This concept is illustrated at: http://
www.chm.bris.ac.uk/webprojects2000/igrant/hightctheory.html
31
Note: there are two ways to account for charge neutrality in p-type superconductors. First, La
2x
Sr
x
CuO
4
may be formally written as: La
2x
Sr
x
Cu
1x
2þ
Cu
x
3þ
O
4
where one Cu
3þ
(or a Cu
2þ
with a trapped hole,
Cu
2þ
(h
þ
)) forms for each Sr
2þ
added. Alternatively, the formula may be written as La
2x
Sr
x
Cu
2þ
O
4(x/
2)
, where one oxygen vacancy is formed for every two Sr
2þ
ions added to the lattice.
32
For example, see: (a) Wojdet, J. C.; Moreira, I.; Illas, F. J. Am. Chem. Soc. 2009, 131, 906.
(b) Kamihara, Y.; Watanabe, T.; Hirano, M.; Hosono, H. J. Am. Chem. Soc. 2008, 130, 3296.
33
A recent issue of the New Journal of Physics was devoted to discoveries related to iron-based HTS:
http://www.iop.org/EJ/abstract/1367-2630/11/2/025003
34
Note: the most promising processing method for YBCO applications involves deposition onto a
flexible metal tape coated with buffering metal oxides. Crystal-plane alignment can be introduced
into the metal tape itself (via the RABiTS process) or a textured ceramic buffer layer can be deposited
on an untextured alloy substrate (the IBAD process). Subsequent oxide layers prevent diffusion of the
metal from the tape into the superconductor while transferring the template for texturing the super-
conducting layer.
References 149