386 B. Kaltenbacher, I. Lasiecka and S. Veljovi´c
References
[1] O.V. Abramov, High-Intensity Ultrasonics, Gordon and Breach Science Publishers,
Amsterdam, 1998.
[2] H. Amann, Parabolic evolution equations with nonlinear boundary conditions, J.
Differential Equations, vol. 72, pp. 201–269, 1988.
[3] H. Amann, Highly degenerate quasilinear parabolic systems, Ann. SC. Normale Su-
periore, Serie IV, vol. 18, pp. 135–166, 1991.
[4] H. Amann, Linear and Quasilinear Parabolic Problems,Vol.I,IIBirkh¨auser, Basel,
1995.
[5] A. Arosio and S. Spagnolo, Global existence of abstract evolution equations of weakly
hyperbolic type, J. Math. Pure et Appl., vol. 65, pp. 263–305, 1986.
[6] A.V. Balakrishnan, Applied Functional Analysis, Springer Verlag, 1975.
[7] F. Bucci, A Dirichlet boundary control problem for the strongly damped wave equa-
tion. Siam J. Control, vol. 10, Nr. 3, pp. 1092–1099, 1992.
[8] A. Bensoussan, G. Da Prato, M. Delfour, S. Mitter, “Representation and Control of
Infinite Dimensional Systems”, Birkh¨auser, Basel, 1993.
[9] S. Chen and R. Triggiani, Proof of extensions of two conjectures on structural damp-
ing for elastic systems, Pacific Journal of Mathematics, vol. 136, pp. 15–55, 1989.
[10] I. Christov, C.I. Christov, P.M. Jordan, Modeling weakly nonlinear wave propaga-
tion, Q. Jl. Mech. Appl. Math., Vol. 60 (2007), 473–495.
[11] C. Clason, B. Kaltenbacher, S. Veljovic, Boundary optimal control of the Westervelt
and the Kuznetsov equation, JMAA, vol. 356, pp. 738–751, 2009 submitted.
[12] T. Dreyer, W. Kraus, E. Bauer, R.E. Riedlinger, Investigations of compact focusing
transducers using stacked piezoelectric elements for strong sound pulses in therapy,
Proceedings of the IEEE Ultrasonics Symposium (2000), 1239–1242.
[13] L.C. Evans, Partial Differential Equations, American Mathematical Society, Provi-
dence, 1998.
[14] M.F. Hamilton, D.T. Blackstock, Nonlinear Acoustics, Academic Press, New York,
1997.
[15] P.M. Jordan, An analytical study of Kuznetsov’s equation: diffusive solitons, shock
formation, and solution bifurcation Physics Letters A 326 (2004), 77–84.
[16] B. Kaltenbacher and I. Lasiecka, Global existence and exponential decay rates for
the Westervelt equation, Discrete and Continuous Dynamical Systems,SeriesS,vol.
2, pp. 503–525, 2009.
[17] B. Kaltenbacher, I. Lasiecka, S. Veljovi´c, Some well-posedness results in nonlinear
acoustics, Tech. Rep. IOC-21, International Doctorate Program Identification, Op-
timization and Control with Applications in Modern Technologies (October 2008).
http://www2.am.uni-erlangen.de/elitenetzwerk-optimierung/preprintfiles/IOC21.pdf
[18] M. Kaltenbacher, Numerical Simulation of Mechatronic Sensors and Actuators,
Springer, Berlin, 2004.
[19] M. Kaltenbacher, H. Landes, J. Hoffelner, and R. Simkovics, Use of modern simula-
tion for industrial applications of high power ultrasonics, in Proceedings of the IEEE
Ultrasonics Symposium, CD-ROM Proceedings, pages 673–678. IEEE, 2002.
[20] V. Komornik, Exact Controllability and Stabilization. The Multiplier Method,Mas-
son, Paris, and John Wiley & Sons, Chichester, 1994.