
Heat and mass transfer 173
35. G. K. Khoe and J. Van Brakel. Drying characteristics of a draft tube spouted bed. Can. J.
Chem. Eng., 61 (1983), 411–418.
36. J. K. Claflin and A. G. Fane. Fluid mechanics, heat transfer and drying in spouted beds with
draft tubes. In Drying ’84, ed. A. S. Mujumdar (New York: Hemisphere, 1984), pp. 137–
141.
37. L. A. P. Freitas and J. T. Freire. Gas-to-particle heat transfer in the draft tube of a spouted bed.
Drying Technol., 19 (2001), 1065–1082.
38. J. Nemeth, E. Pallai, M. Peter, and R. Toros. Heat transfer in a novel type spouted bed. Can.
J. Chem. Eng., 61 (1983), 406–410.
39. A. Chatterjee and U. Diwekar. Spout-fluid bed and s pouted bed heat transfer model. In Drying
’84, ed. A. S. Mujumdar (New York: Hemisphere, 1984), pp. 142–150.
40. A. F. Dolidovich. Hydrodynamics and interphase heat transfer in a swirled spouted bed. Can.
J. Chem. Eng., 70 (1992), 930–937.
41. P. Akulich, A. Reyes, and V. Bubnovich. Effect of peripheral gas jets on hydrodynamics and
transfer phenomena of spouting beds. Powder Technol., 167 (2006), 141–148.
42. L. A. O. Martinez, J. G. Brennan, and K. Niranjan. Drying of liquids in a spouted bed of inert
particles: Heat transfer studies. J. Food Eng., 20 (1993), 135–148.
43. W. P. Oliveira and J. T. Freire. Analysis of evaporation rate in the spouted bed zones during
drying of liquid materials using a three-region model. In Drying ’96, ed. C. Strumillo and
Z. Pakowski, series ed. A. S. Mujumdar (Lodz, Poland: Drukarnia Papaj, 1996), vol. A,
pp. 504–512.
44. H. Littman, J. Y. Day, and M. H. Morgan III. A model for the evaporation of water from large
glass particles i n pneumatic transport. Can. J. Chem. Eng., 78 (2000), 124–131.
45. T. Kudra, A. S. Mujumdar, and G. S. V. Raghavan. Gas-to-particle heat transfer in two-
dimensional spouted beds. Int. Comm. Heat and Mass Transfer, 16 (1989), 731–741.
46. T. Swasdisevi, W. Tanthapanichakoon, T. Charinpanitkul, T. Kawaguchi, T. Tanaka, and Y.
Tsuji. Prediction of gas-particle dynamics and heat transfer in a two-dimensional spouted
bed. Adv. Powder Technol., 16 (2005), 275–293.
47. S. C. S. Rocha, O. P. Taranto, and G. E. Ayub. Aerodynamics and heat transfer during coating
of tablets in two-dimensional spouted bed. Can. J. Chem. Eng., 73 (1995), 308–312.
48. H. S. Mickley and D. F. Fairbanks. Mechanism of heat transfer to fluidized beds. AIChE J., 1
(1955), 374–384.
49. M. A. Malek and B. C. Y. Lu. Heat transfer in s pouted beds. Can. J. Chem. Eng., 42 (1964),
14–20.
50. J. Klassen and P. E. Gishler. Heat transfer from column wall to bed in spouted, fluidized and
packed systems. Can. J. Chem. Eng., 36 (1958), 12–18.
51. A. Chatterjee, R. R. S. Adusumilli, and A. V. Deshmukh. Wall-to-bed heat transfer character-
istics of spouted-fluid beds. Can. J. Chem. Eng., 61 (1983), 390–397.
52. B. Ghosh and G. L. Osberg. Heat transfer in water spouted beds. Can. J. Chem. Eng.,
37
(1959), 205–207.
53. M. S. Brinn, S. J. Friedman, F. A. Gluckert, and R. L. Pigford. Heat transfer to granular
materials. Ind. Eng. Chem. 40 (1948), 1050–1061.
54. R. Higbie. The rate of absorption of a pure gas into a still liquid during shor t periods of
exposure. Trans. AIChE, 31 (1935), 365–389.
55. S. S. Zabrodsky and V. D. Mikhalik. The heat exchange of the spouting bed with a submerged
heating surface. In Intensification of Transfer of Heat and Mass in Drying and Thermal
Processes (Minsk, BSSR: Nauka i Technika, 1967), pp. 130–137.