66 Gregory A. Chechkin and Andrey Yu. Goritsky
[22] H. Holden and N. H. Risebro. Front tracking for hyperbolic conservation laws, Springer, New
York, 2002.
[23] E. Hopf. The partial differential equation u
t
+ uu
x
= µu
xx
, Comm. Pure Appl. Math.,
3 (1950), 201–230.
[24] M. V. Korobkov and E. Yu. Panov. Isentropic solutions of quasilinear equations of the first
order, Mat. Sb., 197:5 (2006), 99-124. English transl. in Sb. Math., 197:5 (2006), 727-752.
[25] S. N. Kružkov. Generalized solutions of the Cauchy problem in the large for first order non-
linear equations. (Russian) , Dokl. Akad. Nauk. SSSR, 187:1 (1969), 29–32. English transl. in
Soviet Math. Dokl. 10 (1969), 785–788.
[26] S. N. Kružkov. First order quasilinear equations with several independent variables. (Russian),
Mat. Sb., 81:123 (1970), 228–255. English transl. in Math. USSR Sb., 10 (1970), 217–243.
[27] S. N. Kružkov. Nonlinear Partial Differential Equations (Lectures). Part II. First-order equa-
tions, Moscow State Lomonosov Univ. eds, Moscow, 1970.
[28] S. N. Kruzhkov and E. Yu. Panov. First-order conservative quasilinear laws with an infinite
domain of dependence on the initial data. (Russian), Dokl. Akad. Nauk SSSR, 314:1 (1990),
79–84. English transl. in Soviet Math. Dokl., 42:2 (1991), 316–321.
[29] O. A. Ladyženskaya. On the construction of discontinuous solutions of quasi-linear hyperbolic
equations as limits of solutions of the corresponding parabolic equations when the “coefficient
of viscosity” tends towards zero. (Russian), Dokl. Akad. Nauk SSSR, 111:2 (1956), 291–294.
[30] P. D. Lax. Hyperbolic systems of conservation laws. II, Comm. Pure Appl. Math., 10:1 (1957),
537–566.
[31] P. D. Lax. Weak solutions of nonlinear hyperbolic equations and their numerical computation.
Comm. Pure Appl. Math., 7:1 (1954), 159–193.
[32] P. D. Lax. Hyperbolic partial differential equations. Courant Lect. Notes in Math., 14. Amer-
ican Math. Soc., Providence, RI, 2006.
[33] P. G. LeFloch. Hyperbolic systems of conservation laws. The theory of classical and nonclas-
sical shock waves, Lect. Math. ETH Zürich. Birkhäuser, Basel, 2002.
[34] P.-L. Lions, B. Perthame and E. Tadmor. A kinetic formulation of multidimensional scalar
conservation laws and related equations, J. Amer. Math. Soc., 7:1 (1994), 169–191.
[35] J. Málek, J. Ne
ˇ
cas, M. Rokyta and M. R
◦
u
ži
ˇ
cka. Weak and measure-valued solutions to evolu-
tionary PDEs, Chapman & Hall, London, 1996.
[36] O. A. Ole
˘
ınik. On Cauchy’s problem for nonlinear equations in a class of discontinuous func-
tions. (Russian), Doklady Akad. Nauk SSSR, 95:3 (1954), 451–454.
[37] O. A. Ole
˘
ınik. Discontinuous solutions of non-linear differential equations. (Russian), Uspehi
Mat. Nauk, 12:3 (1957), 3–73. English transl. in Russian Mathematical Surveys, 3 (1957).
[38] F. Otto. Initial-boundary value problem for a scalar conservation law, C. R. Acad. Sci. Paris
Sér. I Math., 322:8 (1996), 729–734.
[39] E. Yu. Panov. Uniqueness of the solution of the Cauchy problem for a first-order quasilinear
equation with an admissible strictly convex entropy. (Russian), Mat. Zametki, 55:55 (1994),
116–129. English transl. in Math. Notes, 55:5-6 (1994), 517–525.
[40] E. Yu. Panov. On sequences of measure valued solutions for a first order quasilinear equation.
(Russian), Mat. Sb., 185:2 (1994), 87–106; English transl. in Russian Acad. Sci. Sb. Math.,
81:1 (1995), 211–227.
[41] E. Yu. Panov. Property of strong precompactness for bounded sets of measure valued solutions
of a first-order quasilinear equation. (Russian), Mat. Sb., 190:3 (1999), 109–128; English
transl. in Sb. Math., 190:3 (1999), 427–446.