t = v
n
φ(t) = φ(v
n
)
t = F t
1
t
2
. . . t
m
F m φ(t) =
I(F )(φ(t
1
), φ(t
2
), . . . , φ(t
m
))
val(I, φ, A) A φ I
A = P t
1
t
2
. . . t
m
val(I, φ, A) = I(P )(φ(t
1
), φ(t
2
), . . . , φ(t
m
));
A = ¬B
val(I, φ, A) =
(
0, val(I, φ, B) = 1,
1, val(I, φ, B) = 0.
A = (B ∨ C)
val(I, φ, A) =
(
0, val(I, φ, B) = val(I, φ, C) = 0,
1, .
A = (B ∧ C)
val(I, φ, A) =
(
1, val(I, φ, B) = val(I, φ, C) = 1,
0, .
A = (B ⇒ C)
val(I, φ, A) =
(
0, val(I, φ, B) = 1, val(I, φ, C) = 0,
1, .
val(I, φ, ∀xA) = min {val(I, ψ, A) | ψ ∈ φ
x
}
val(I, φ, ∃xA) = max {val(I, ψ, A) | ψ ∈ φ
x
}
0 < 1
val(I, φ, ∀xA) = 1 val(I, ψ, A) = 1
ψ φ
x val(I, φ, ∃xA) = 1 val(I, φ, A) = 1
f : M
n
→ B
n n M
I(P ) I P n
n M