Файлы
Обратная связь
Для правообладателей
Найти
Дронов С.В. Задачник по теории вероятностей (второй семестр)
Файлы
Академическая и специальная литература
Математика
Теория вероятностей и математическая статистика
Теория вероятностей
Задачники по теории вероятностей
Назад
Скачать
Подождите немного. Документ загружается.
g
(
x
)
θ
p
µ
(
x
)
=
1
2
e
−|
x
−
µ
|
.
p
θ
(
x
)
=
θ
x
θ
,
x
∈
[0
,
1]
0
,
x
6∈
[0
,
1]
p
θ
(
x
)
=
2
x
θ
2
,
x
∈
[0
,
θ
]
0
,
x
6∈
[0
,
θ
]
p
θ
(
x
)
=
θ
√
2
π
x
3
e
−
θ
2
/
(2
x
)
,
x
>
0
0
,
x
≤
0
p
θ
(
x
)
=
(
e
θ
−
x
,
x
≥
θ
,
0
,
x
<
θ
p
α,µ
(
x
)
=
1
2
α
exp
−
|
x
−
µ
|
α
.
θ
∗
=
¯
X
p
θ
(
x
)
=
1
π
(1
+
(
x
−
θ
)
2
)
?
θ
∗
σ
2
(
θ
∗
−
θ
)
√
n
d
−
→
η
,
η
N
(0
,
σ
2
)
θ
∗
=
h
1
n
n
X
j
=1
g
(
x
j
)
,
σ
2
=
(
h
0
(
a
))
2
+
∞
Z
−∞
(
g
(
x
)
−
a
)
2
dF
θ
(
x
)
,
a
=
M
g
(
x
1
)
d
(
θ
)
=
M
(
θ
∗
−
θ
)
2
K
b
=
{
θ
∗
|
M
θ
∗
=
b
}
.
b
=
0
θ
±
1
−
ε
lim
n
→∞
P
(
θ
−
≤
θ
≤
θ
+
)
≥
1
−
ε.
X
U
[0
,θ
]
θ
∗
1
=
2
¯
X
θ
∗
2
=
(1
+
1
/n
)
X
(
n
)
M
(
θ
∗
i
−
θ
)
2
=
D
θ
∗
i
,
i
=
1
,
2
.
d
1
(
θ
)
=
D
θ
θ
∗
1
=
4
D
θ
¯
X
=
1
n
2
(4
P
n
j
=1
D
θ
x
j
)
=
=
(4
nD
θ
x
1
)
/n
2
=
θ
2
/
3
n.
d
2
(
θ
)
=
D
θ
θ
∗
2
=
(1
+
1
n
)
2
M
θ
X
2
(
n
)
−
((1
+
1
n
)
M
θ
X
(
n
)
)
2
=
=
(1
+
1
n
)
2
M
θ
X
2
(
n
)
−
θ
2
.
X
(
n
)
M
θ
X
2
(
n
)
=
θ
Z
0
x
2
nx
n
−
1
θ
n
dx
=
n
θ
n
θ
n
+2
n
+
2
=
n
n
+
2
θ
2
,
d
2
(
θ
)
=
θ
2
n
(
n
+
2)
.
d
1
(
θ
)
d
2
(
θ
)
θ
∗
1
n
=
1
θ
∗
2
X
λ
λ
λ
∗
1
=
¯
X
,
λ
∗
2
=
v
u
u
t
X
2
+
1
4
−
1
2
.
λ
∗
1
g
(
x
)
=
h
(
x
)
=
x,
a
=
M
x
1
=
λ,
h
0
(
a
)
=
1
,
σ
2
1
=
D
x
1
=
λ
λ
∗
2
g
(
x
)
=
x
2
,
h
(
x
)
=
q
x
+
1
/
4
−
1
/
2
.
a
=
M
x
2
1
=
λ
2
+
λ,
h
0
(
a
)
=
1
2
λ
+
1
,
σ
2
2
=
D
x
2
1
(2
λ
+
1)
2
.
x
1
Π
λ
M
x
4
1
=
λ
4
+
6
λ
3
+
6
λ
2
+
λ
;
(
M
x
1
)
2
=
(
λ
2
+
λ
)
2
=
λ
4
+
2
λ
3
+
λ
2
,
σ
2
2
=
4
λ
3
+
5
λ
2
+
λ
(2
λ
+
1)
2
=
λ
1
+
λ
(2
λ
+
1)
2
.
σ
2
1
<
σ
2
2
λ
∗
1
θ
∗
θ
σ
2
θ
1
−
ε
x
P
(
|
(
θ
∗
−
θ
|
√
n
≤
x
)
→
P
(
|
η
|
<
x
)
=
P
(
η
σ
<
x
σ
)
=
2Φ(
x
)
−
1
.
ε
x
2Φ(
x
)
−
1
=
1
−
ε,
P
(
θ
∗
−
x
√
n
≤
θ
≤
θ
∗
+
x
√
n
)
→
1
−
ε
(
n
→
∞
)
.
x
1
−
ε/
2
θ
∗
k
=
k
r
(
k
+
1)
X
k
U
[0
,θ
]
lim
k
→∞
θ
∗
k
λ
Γ
α,λ
α
X
α
k
α
∗
k
=
k
!
X
k
!
1
/k
θ
∗
1
=
X
(1)
θ
∗
2
=
2
¯
X
−
1
U
[
θ
,
1]
X
N
(
α,
1)
α
>
0
α
∗
1
=
¯
X
α
∗
2
=
max
{
0
,
¯
X
}
U
[
θ
,θ
+1]
θ
∗
=
[
x
1
]
θ
∗
α
αθ
α
∗
=
n
−
1
n
¯
X
Γ
α,
1
θ
∗
=
(1
+
1
/n
)
X
(
n
)
[0
,
θ
]
L
(
X
,
θ
)
=
h
(
X
)
exp
{
A
(
θ
)
T
(
X
)
+
B
(
θ
)
}
,
h,
A,
T
,
B
N
(
a,
1)
N
(
a,
σ
2
)
U
[
a,b
]
Γ
α,λ
[0
,
θ
]
θ
∗
=
2
¯
X
ˆ
θ
=
X
(
n
)
lim
n
→∞
P
nX
(
k
)
θ
<
y
!
→
Γ
1
,k
(
y
)
k
,
y
¯
X
m
θ
σ
2
(
θ
)
θ
U
[0
,θ
]
1
−
ε
[
X
(
n
)
,
X
(
n
)
/
Ψ]
Ψ
Ψ
n
−
1
(
n
−
(
n
−
1)Ψ)
=
ε.
X
(1)
U
[
θ
,θ
+1]
U
[
θ
,
2
θ
]
¯
X
,
X
2
U
[0
,θ
]
H
0
H
1
δ
:
X
→
{
0
,
1
}
S
=
{
X
∈
X
:
δ
(
X
)
=
1
}
,
α
(
δ
)
=
P
0
(
S
)
1
−
P
1
(
S
)
α
(
δ
)
β
(
δ
)
=
P
1
(
S
)
δ
(
β
(
δ
)
→
max
α
(
δ
)
≤
α
α
S
=
X
∈
X
:
L
(
X
,
1)
L
(
X
,
2)
>
t
,
t
P
0
(
S
)
≤
α
H
0
=
{
N
(0
,
1)
}
H
1
=
{
Π
λ
}
H
0
=
{
N
(0
,
1)
}
H
1
=
{
P
(0
≤
ξ
≤
1)
=
1
}
N
(
α,
1)
H
0
=
{
α
=
0
}
H
1
=
{
α
=
1
}
S
=
{
X
:
X
1
≥
3
}
.
H
0
=
{
U
[0
,
1]
}
H
1
sup
t
∈
[0
,
1]
|
F
∗
n
(
t
)
−
t
|
>
1
3
.
n
F
G
H
0
=
{
F
=
G
}
n/
2
δ
>
0
n
δ
ε
α
H
0
=
{
θ
=
1
}
N
(
θ
,
1)
N
(1
,
θ
)
E
θ
p
=
θ
/
2
Π
θ
σ
2
H
0
=
{
σ
2
=
σ
2
1
}
H
1
=
{
σ
2
<
σ
2
1
}
H
i
=
{
E
α
i
}
,
i
=
0
,
1;
H
i
=
{
Π
λ
i
}
,
i
=
0
,
1;
m
p
i
,
i
=
1
,
2
{
N
(
a,
1)
}
{
N
(
b,
2)
}
.
‹
1
2
3
4
5
›