
S
2
¯
X
−→ q p
∗
−→ 1 − q = p,
p
∗
n
∗
θ
[0, θ] θ
∗
= X
(n)
θ
∗
P (θ
∗
< x) = P
θ
(x
1
< x, ..., x
n
< x) =
=
Q
n
j=1
P (x
j
< x) = P
n
(x
1
< x).
x
1
x ∈ [0, θ] P (x <
x) = x/θ
P (θ
∗
< x) = (x/θ)
n
(0 ≤ x ≤ θ),
θ
∗
p
θ
∗
(x) =
nx
n−1
θ
n
(0 ≤ x ≤ θ).
Mθ
∗
=
θ
Z
0
nx
n
θ
n
dx =
n
θ
n
θ
n+1
n + 1
=
nθ
n + 1
,
θ
∗∗
= (n + 1)θ/n = (1 + 1/n)X
(n)
.
p
d(F, G) = sup
x
|F (x) − G(x)|.