Подождите немного. Документ загружается.
ξ, η ϕ
ξ+η
(t) = ϕ
ξ
(t)ϕ
η
(t)
M|ξ|
k
ϕ(t) k
Mξ
k
= i
k
ϕ
(k)
(0).
• N(a, σ
2
) exp{ita −
σ
2
t
2
2
}
• Π
λ
exp{λ(e
it
− 1)}
• Γ
α,λ
(1 −
it
α
)
−λ
.
ξ
1
6
1
3
1
3
1
6
ϕ
ξ
(t) =
1
6
(e
−2it
+ e
2it
) +
1
3
(e
−it
+ e
it
) =
1
3
cos 2t +
2
3
cos t.
ϕ(t) =
2
3
cos t +
1
3
e
2it
ϕ(t) = 1 +
∞
X
m=1
(−1)
m
3 (2m)!
(2 + 2
2m
)t
2m
+
∞
X
m=1
(2i)
2m−1
3 (2m − 1)!
t
2m−1
.
ϕ(t)
Mξ
2m
=
1
3
(2 + 2
2m
), Mξ
2m−1
=
2
2m−1
3
.
ξ
1
3
1
3
1
3
ϕ(t) =
1
1+t
2
p(x) =
1
2π
+∞
Z
−∞
e
−itx
1 + t
2
dt =
x
2π
+∞
Z
−∞
e
−iw
x
2
+ w
2
dw.
R
e
−iw
x
2
+ w
2
≤
1
R
2
− x
2
,
R → ∞
x
2π
+∞
Z
−∞
e
−iw
x
2
+ w
2
dw =
x
2π
I
e
−iw
x
2
+ w
2
dw =
x
2π
2πi
e
−iw
x
2
+ w
2
!
w=±xi
,
w
x > 0
xi −xi
ψ(z)
φ(z)
z=a
=
ψ(a)
φ
0
(a)
.
p(x) =
1
2
e
−|x|
.
a)
ξ
1
2
1
2
; b)
ξ
1
3
1
3
1
3
; c)
ξ
1
2
1
3
1
6
.
a) cos 2t; b)
1
4
e
it
+
1
4
cos 3t +
1
2
cos 4t?
P(ξ = k) = Aq
k−1
, k = 1, 2, ...
A
P
∞
n=1
n
s
q
n−1
s
[a, b]
α
p(x) =
1
π ch x
.
a) e
−t
2
; b)
a
2
a
2
+ t
2
; c)
1
1 − it
; d)
sin t
t
?
ϕ
ξ
(t) ϕ
−ξ
(t)
ϕ(t) = a cos t + b sin t
b 6= 0
Ψ(t) =
1
t
(ϕ
0
(t) − ϕ
0
(0))