ξ
Dξ = M(ξ − Mξ)
2
= Mξ
2
− (Mξ)
2
.
Dξ ≥ 0, Dξ = 0 ⇐⇒ ξ = .
D(λξ) = λ
2
Dξ.
D(ξ + c) = Dξ.
D(ξ + η) = Dξ + Dη ξ η.
D(ξ + η) = Dξ + Dη + 2 (ξ, η)
ξ, η (ξ, η) = Mξη − MξMη
ξ η
ρ(ξ, η) =
(ξ, η)
√
Dξ Dη
=
Mξη − Mξ · Mη
√
Dξ Dη
.
|ρ(ξ, η)| ≤ 1;
|ρ(ξ, η)| = 1 ⇐⇒ ∃a, b : ξ = aη + b.
ξ, η ⇒ ρ(ξ, η) = 0.
ξ
a ∈ (0, 1) η = |ξ − a|
ξ, η
ξ
f(x) =
x ∈ [0, 1]
x
Mξ =
1
R
0
xdx =
1
2
; Mξ
2
=
1
R
0
x
2
dx =
1
3
;
Dξ = Mξ
2
− (Mξ)
2
=
1
12
;
Mη = M|ξ − a| =
1
R
0
|x − a|dx =