P
∞
n=1
g(2
−(n+1)
)
P
∞
n=1
X
(n)
(t) − X
(n+1)
(t)
.
X
(n)
(t) = X
(1)
(t) −
n−1
X
j=1
X
(n)
(t) − X
(n+1)
(t)
ˆ
X(t) = lim
n→∞
X
(n)
(t).
ξ(t) =
ˆ
X(t), N < ∞
0, N = ∞
ξ(t) x(t) t = k/2
n
t ε > 0
w
h
= sup{|ξ(s) − ξ(q)|, |s − q| < h}.
ξ(t) w
h
→ 0 h → 0
t
m
=
k(m)
2
n(m)
−→ t, m → ∞.
P(|x(t) − ξ(t)| ≥ ε) ≤ P(|x(t) − x(t
m
)| ≥ ε/2)+
+P(|ξ(t) − ξ(t
m
)| ≥ ε/2).
P(w
t−t
m
≥ ε/2) → 0, m → ∞.