
L
2
ξ(t) t → t
0
(∃m) m(t) → m
t → t
0
,
(∃K < ∞) lim
s,t→t
0
K(t, s) = K.
ξ(t)
L
2
−→ ξ.
m = Mξ, K = Mξ
∗
¯
ξ
∗
ξ
∗
= ξ −m
|m(t) − m| ≤ M|ξ(t) − ξ| ≤
q
M|ξ(t) − ξ|
2
→ 0,
|K(t, s) − K| ≤
≤
q
M|ξ
∗
(t)|
2
M|ξ
∗
(s) − ξ
∗
|
2
+
q
M|ξ
∗
|
2
M|ξ
∗
(t) − ξ
∗
|
2
≤
≤ c(t)kξ
∗
(s) − ξ
∗
k
L
2
+ ckξ
∗
(t) − ξ
∗
k
L
2
,
c t s
ε > 0 δ
ε/2 |t−t
0
| < δ
q
M|ξ
∗
(t)|
2
t
0
q
M|ξ
∗
(t)|
2
= kξ
∗
(t)k
L
2
≤ kξ(t) − ξk
L
2
+ kξ
∗
k
L
2
+ |m(t) − m|.
c(t)kξ
∗
(s)−ξ
∗
k
L
2
ε/2 s t
0
kξ(t) − ξ(s)k
2
L
2
= |m(t) − m(s)|
2
+ kξ
∗
(t) − ξ
∗
(s)k
2
L
2
.
kξ
∗
(t) − ξ
∗
(s)k
2
L
2
= K(t, t) + K(s, s) − 2<eK(t, s),